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A B S T R A C T

Water electrolysis is the most promising method for efficient production of high purity hydrogen (and
oxygen), while the required power input for the electrolysis process can be provided by renewable sources
(e.g. solar or wind). The thus produced hydrogen can be used either directly as a fuel or as a reducing
agent in chemical processes, such as in Fischer–Tropsch synthesis. Water splitting can be realized both
at low temperatures (typically below 100 °C) and at high temperatures (steam water electrolysis at 500–
1000 °C), while different ionic agents can be electrochemically transferred during the electrolysis process
(OH−, H+, O2−). Singular requirements apply in each of the electrolysis technologies (alkaline, polymer elec-
trolyte membrane and solid oxide electrolysis) for ensuring high electrocatalytic activity and long-term
stability. The aim of the present article is to provide a brief overview on the effect of the nature and struc-
ture of the catalyst–electrodematerials on the electrolyzer’s performance. Past findings and recent progress
in the development of efficient anode and cathode materials appropriate for large-scale water electrol-
ysis are presented. The current trends, limitations and perspectives for future developments are summarized
for the diverse electrolysis technologies of water splitting, while the case of CO2/H2O co-electrolysis (for
synthesis gas production) is also discussed.

© 2016 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Hydrogen: potential energy carrier, clean fuel, valuable
chemical and essential ingredient of synthesis gas

The increase in world’s energy consumption during the last
decades is a result both of the global rise in population and of the
changes in the standards of living [1]. Indicatively, the average global
power demand is predicted to be approximately 30 and 46 TW in
2050 and 2100 respectively [2]. Nowadays fossil fuels (i.e. coal, oil,
natural gas) constitute the primary source that covers global energy
needs. The continuously increasing energy demands, the limiting
reserves of fossil fuels together with the environmental and soci-
etal problems created by the fossil fuel dependence (e.g. global
warming, acid rain, local air quality deterioration) render an urgent
need for the development of new energy strategies with limited
greenhouse gas emissions. These will rely both on renewable energy
sources (which are more abundant and cleaner compared to fossil
fuels) and on chemical processes for synthetic fuel production (e.g.
Fischer–Tropsch synthesis) [1–6].

A fundamental problem related with the use of solar and wind
energies is their inability to operate independently from demand,
since their unscheduled intermittent supply often mismatches the
grid power demands. Thus, the development and application of
systems for the efficient storage of excess electricity is entailed [7,8].
Electrocatalytic technologies can play a crucial role for the indirect
storage of surplus renewable energy via the conversion of electric-
ity to chemical energy [8]. Among them, water electrolysis is a
promising alternative compared to electricity storage using batter-
ies [9]. During water electrolysis, renewable energy can be used as
the electricity source to split water into hydrogen and oxygen. The
thus produced green hydrogen can be either stored and used in the
chemical industry or used for electricity generation (through fuel
cells or internal combustion engines) with zero post-combustion
pollutants [6].

The use of hydrogen as an energy carrier has a number of ad-
vantages. Hydrogen (a) is relatively abundant in nature (in water)
[1] and can be produced using either renewable or non-renewable
sources [10], (b) can be used as a fuel in both fuel cells and inter-
nal combustion engines (the latter however suffers from concomitant
NOx production) [8], (c) has high gravimetric energy density i.e. up
to three times larger than liquid hydrocarbon–based fuels [4,11]
(however worth to note is its low volumetric energy density which
caused safety issues with its pressurized storage), (d) has small en-
vironmental footprint, since the only product of its oxidation is
water [6,8]. Its use in the transport sector has been successfully
introduced and Hua et al. recently reviewed the status of hydrogen-
fueled buses in Europe, USA and Canada [12].

However, using hydrogen as a fuel requires appropriate infra-
structures and huge investments. A more feasible scenario for
tackling the energy problem concerns the employment of water

electrolysis for the production of synthetic fuels that can be used
in the current infrastructures. Renewable energy sources will provide
the electrons required for the splitting of water. In a parallel process,
CO2 will be captured from large point sources and be recycled with
the utilization of the renewably produced hydrogen (reverse water–
gas-shift reaction) for the production of synthetic fuels (Fischer–
Tropsch synthesis) [13]. Additionally, hydrogen can be also used as
a reducing agent of several other catalytic processes in the petro-
leum and chemical industry, e.g. for the refining and upgrading of
crude oil and for ammonia synthesis respectively [1].

In 2015, the worldwide hydrogen production is around 50 Mt
per year [1,8,10,13–16] and is covered by fossil fuels (steam re-
forming of natural gas, coal gasification, partial oxidation of
hydrocarbons) [1,8,10,15,16]; however, this includes the concomi-
tant production of CO2. Within the vision for a sustainable future,
several methods, other than water electrolysis, for renewable hy-
drogenproductionhavebeendeveloped, suchasbiomass gasification,
thermochemicalwater splittingandphotoelectrochemicalwater split-
ting [10,15]. Among them, water electrolysis is the only mature
technology that is currently commercially available [15].

Hydrogen production via electrolysis using renewable energy
sources amounts to only 4% of today’s hydrogen production, mainly
due to economic factors (i.e. lack of widely available renewable
energy systems of low cost, high capital cost, high energy input re-
quired) [10]. This picture is going to change in the near future and
increase in the use of renewable energy sources is expected, since
the European Energy Directive has set the target for covering 14%
of the energy needs by renewable energy sources by 2020. Hydro-
gen production bywater electrolysis using renewable energy sources
is expected to play a key role in the scenario of a green energy
economy [8]. Clear advantages of this method is the high efficien-
cy and the high purity of the produced hydrogen, which is of great
importance for its subsequent conversion to electricity using low
temperature polymer electrolyte fuel cells [17]. Furthermore, high
purity oxygen is a valuable by-product of water electrolysis. Its uti-
lization both inmedical care and in chemical industry (blast furnaces,
electric furnaces and glass melting, gasification) could lead to sub-
stantial decrease in the nominal cost of water electrolysis [18].

2. Water electrolysis technologies

Depending on the kind of electrolyte and thus the type of
ionic agent (OH−, H+, O2−), and the operation temperature, water
electrolyzers are classified into three main categories: alkaline [19],
polymer–electrolyte membrane (PEM) [20,21] and solid oxide
electrolyzers (SOE) [22–24]. The operating principles of the three
main types of electrolysis technologies are presented in Fig. 1.

Solid oxide electrolyzers (SOEs) operate typically at tempera-
tures above 500 °C, with water in the form of steam. The SOE
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technology traditionally utilizes O2− conductors (mainly yttria sta-
bilized zirconia (YSZ)). However, in the last years, several ceramic
proton conductors have emerged and found application in solid oxide
fuel cells. The use of ceramic proton conductors in steam electrol-
ysis has gained much attention since these materials show higher
ionic conductivity and better efficiency compared to that of oxygen-
ion conductors at the intermediate temperature range (500–
700 °C). Moreover, they exhibit better chemical compatibility
with Ni, which is the most used hydrogen electrode for SOEs. We
refer to Traversa and coworkers [25] for a recent review on proton-
conducting SOE.

Alkaline and PEM electrolyzers operate at the low temperature
range (typically below 100 °C) where water is liquid. Recent pro-
gress on the development of polymeric membranes with protonic
conductivity operative at temperatures up to 200 °C has been carried
out in the field of fuel cell technology [26–28], which can extend
the temperatures for PEM electrolysis as well.

In alkaline electrolyzers, the anode and cathode electrodes are
immersed in a liquid alkaline electrolyte, most commonly potas-
sium hydroxide. A diaphragm permeable for OH− between the two
electrodes serves to separate the product gases. In solid oxide and
PEM electrolyzers the solid electrolytes, ceramic and polymers, re-
spectively, fulfill the role of gas separator.

Each of the types of electrolysis has its own pros and cons (sum-
marized in Table 1), but all three technologies are appealing and
promising for sustainable energy application. Alkaline electrolysis
is well established as the most applied commercial technology, with
suppliers such as De Nora SAP, Norsk Hydro, Electrolyzer Corp,
Teledyne Energy Systems and General Electric [19]. Main advan-
tages of alkaline electrolysis are low cost owing to the use of non-
noble electrodes and long-term stability. On the contrary, the acidic
environment in PEM electrolyzers hinders the kinetics of the redox
reactions and necessitates the use of expensive noble metal cata-
lysts and materials for the bipolar plates. This, together with the
high cost of polymeric membranes, is the main limitation for the
commercialization of PEM electrolysis in the near term.

Thermodynamic analysis by Todd et al. indicates that water elec-
trolysis under high pressure has lower energy requirements [29].
Alkaline electrolyzers can in principle operate at higher pressures,
although at higher degradation rates [30]. However, the use of a
liquid electrolyte does not allow operation at differential pres-
sures, in order to avoid gas and electrolyte permeation through the
diaphragm. On the other hand, operation under different pres-
sures at the two sides of the electrolyzer would facilitate hydrogen
storage, since hydrogen will be produced at high pressure and the
need for additional compressing systems will be eliminated, while
on the other hand water could be supplied (and oxygen will be pro-
duced) at near atmospheric pressure [31].

The solid form of the electrolyte in SOEs and PEMs enables amore
compact design and operation at differential pressures is feasible
and favorable. Moreover, the solid nature of the electrolyte makes
SOEs and PEMs more dynamic systems with faster response upon
application of a variable power load compared to liquid alkaline
electrolyzers where diffusion rates can be slow.

Regarding ohmic losses, ionic conduction in the liquid electro-
lyte of alkaline electrolyzers is slow and the presence of the
diaphragm can also further hinder OH− transport, thus low current
densities are generally observed in this technology. Ohmic losses
are smaller both in SOEs, due to better ion conduction at the high
operating temperature, and in PEM electrolyzers, due to the wide
availability of polymericmembranes with high protonic conductivity.

The diaphragm in alkaline electrolysis largely prevents ionic con-
duction, but it can also be the source of reduced efficiency due to
the unwanted permeation of gases. Apart from inhibiting the overall
performance, it causes several safety issues. Gas crossover can occur
also in the polymeric membrane in PEM electrolyzers, but to a lesser
extent. In this case, the membrane thickness can minimize perme-
ation of the gases. Even though ceramic electrolytes suppress gas
permeation, safety issues also arise in the SOE. Satisfactory sealing
between the anodic and cathodic chambers is difficult to achieve
for long term at high operation temperatures and the risk of a sudden
cracking is not negligible.

Fig. 1. Operation principles of alkaline, PEM (proton-exchange membrane) and solid oxide water electrolysis. The overall reaction is H2O → H2 + 1/2O2. Oxygen evolution
occurs at the anode, hydrogen evolves at the cathode. The case of solid oxide electrolysis shown is that of an O2−-conducting electrolyte, with a nickel/yttria-stabilized zir-
conia cathode and a lanthanum strontium manganite (LSM) anode.
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On the other hand, the high operating temperature of SOEs is
the main characteristic that makes this technology advantageous
compared to low temperature electrolysis. The thermodynamics of
water electrolysis is shown in Fig. 2, adapted from Ebbesen et al.
[32]. The total energy demand of the process, ΔH, increases only
slightly with increasing temperature, while the TΔS contribution

becomes increasinglymore significant, and thus the electric energy
input necessary to sustain the electrolysis, ΔG, is considerably lower
at high temperatures, thereby decreasing the cost of the produced
hydrogen. For an average current density of 7000 A/m2 and an inlet
steam temperature of 800 °C, SOE stacks are predicted to operate
at 1.3 V andhave electrical energy consumption of 3 kWhper normal
m3 of H2, while 4.5 kWh is required for commercial alkaline elec-
trolysis. However, heating energy circulation and losses are not
taken into account in these calculations [18,33]. In this sense, the
net efficiency of SOEs is 40–60% (taking into account heating energy
demands),which is lower than that of low temperature electrolyzers
(59–70% and 65–82% for alkaline and PEM electrolyzers respec-
tively, basedon thehydrogenyield). However, this picture can change
if the required heat is generated renewably (by heat from the sun
or a nuclear power plant). Alternatively, in the case of integrated
systems the required heat can be supplied from the waste heat of
exothermic processes. SOEs in both cases can operate with near to
100% efficiency.

Another interesting feature of SOEs (in the case of O2− conduct-
ing electrolytes), which is also related to their high temperature
operation, is that this technology offers the possibility to co-
electrolyze H2O/CO2mixtures for the production of syngas (composed
of CO and H2) [34–37]. Syngas can be further converted to meth-
anol or to higher hydrocarbons via the Fischer–Tropsch synthesis
[13,14,38]. In such way, co-electrolysis can contribute to storage of
the renewable electricity and reduction of CO2 emission. CO2/H2O
co-electrolysis represents demonstrated technology and can be a

Table 1
The typical characteristics of the main electrolysis technologies.

Fig. 2. Thermodynamics for H2O electrolysis at atmospheric pressure. Reprinted from
reference 32 with permission of American Chemical Society.
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key-step in CO2 recycling scenarios, provided suitably stable
electrocatalysts are developed. The main features of co-electrolysis
are discussed in Section 5.

Although the high temperature operation of SOEs comes with
inherent advantages, it is also the source of degradation and lack
of stability, which have to be solved before solid oxide electrolysis
can be commercialized on a large scale [14,19,20].

Finally, a new trend in the alkaline electrolysis emerged in the
last years, based on polymeric membranes with anionic (OH−) con-
ductivity, also known as anion exchange membranes (AEM). This
innovative technology, named as solid alkaline electrolysis, appears
to be promising, since it can combine positive features of both al-
kaline and PEM electrolysis. In the frame of the present review, solid
alkaline electrolysis will be discussed together with conventional
alkaline electrolysis for consistency reasons. However, since this tech-
nology is a hybrid between alkaline and PEM electrolysis (due to
the polymeric form of the AEM), other reviews have classified it as
a subcategory of PEM electrolyzers. Non-noble metal catalysts can
be used in this technology since the kinetics of the oxygen evolu-
tion reaction is better in alkaline media than in acidic media (PEM
electrolysis), while the solid form of the membrane can provide the
mechanical integrity for operation under differential pressures within
a compact and scalable cell design. However, several issues (such
as high cost and poor ionic conductivity of the polymeric mem-
branes, susceptibility to degradation) need to be solved before this
technology can be applied [31,39,40].

2.1. Requirements for electrocatalysts

Targeting efficient large-scale electrolysis, abundant, stable and
active materials should be developed. The practical consider-
ations on the development of electrocatalysts are different for the
three electrolysis technologies, due to special requirements related
mainly with the acidity/alkalinity of the environment and the
operating temperature.

On the fundamental level, the main requirements for a
well-performing electrocatalyst are:

(i) low intrinsic overpotential for the desired reaction (hydro-
gen or oxygen evolution),

(ii) high active surface which facilitates both good accessibility
to the reactants and sufficiently fast removal of products
(gases, liquids, ions),

(iii) high electrical conductivity (providing pathways for electrons),
(iv) proper chemical stability (compatibility with the electrolyte),
(v) electrochemical stability (i.e. not being corroded at high

overpotentials),
(vi) good mechanical stability (especially for high temperature

electrolysis).

In addition to these requirements, which ensure high overall
system efficiency, commercialization also requires long-term sta-
bility and low capital costs in order to compete with the conventional
non-sustainable processes. The following sections present the status
of electrocatalyst development for anodic and cathodic reactions
in the different types of electrolysis.

3. Anodes for water electrolysis: electrocatalysts for the
oxygen evolution reaction

Oxygen evolution is the bottleneck in the electrolysis of water.
Both in alkaline and PEM electrolyzers, the main energy losses are
due to high overpotentials occurring at the anode, as a result of the
sluggish kinetics of the oxygen evolution reaction (OER).

It is well established that IrO2 and RuO2 are the most active ma-
terials forOERduringwater electrolysis. RuO2 suffers fromdeactivation

both in acidic and alkaline environments (due to dissolution), while
IrO2 is the catalyst which shows the best trade-off between cata-
lytic activity and stability both in alkaline and acidic media [9].
However, since iridium is one of the least abundant elements on
earth, the use ofmore abundantmaterialswith lower cost is desired.
This has been achieved in alkaline electrolysis by the use of tran-
sitionmetal catalysts, but it remains a challenge in PEMelectrolysis.

As discussed in detail in Section 3.1., oxides of transition metals
(Ni, Co, Fe, Mn) are stable at high pH and thus are promising ma-
terials for alkaline electrolysis, while research is mostly focused on
the optimization of their microstructure. Perovskite materials have
recently also gained much attention in alkaline electrolysis.

On the contrary, the acidic nature of the electrolyte in PEM elec-
trolysis limits the choice of suitable metals, and thus this technology
still relies on the use of platinum group metals. Aiming at lower
cost, research efforts in this field mainly focus on minimizing the
use of IrO2 by replacing it partially by more abundant elements. The
developments in this direction are discussed in Section 3.2.

In solid oxide electrolysis, the anode suffers from one of themajor
degradation issues in this technology, i.e. the delamination of the
oxygen electrode caused by the high oxygen partial pressures at
the electrode/electrolyte interface [41], which leads to a large in-
crease in the polarization resistance for the oxygen oxidation reaction
[42,43]. Perovskite materials are typically used in the oxygen elec-
trode of solid oxide electrolyzers, and evaluated in Section 3.3.

The present review deals with concepts on heterogeneous
electrocatalysis for the electrochemical water splitting by metal
oxides on electrode surfaces. Recent advances have been pre-
sented in the last years also in the field of homogeneous water-
oxidation catalysis [44]. Several complexes have been developed
[45–47], while Thomsen et al. [48] recently reported grafting of such
metal–organic complexes onto the electrode support. According to
Dau et al. [49] homogeneous and heterogeneous catalytic systems
for water splitting share structural and functional characteristics and
unifying concepts with combined properties will play a role in the
future. However, further discussion on homogeneous water oxida-
tion is beyond the scopes of the present article.

3.1. Alkaline electrolyzers

3.1.1. Ni, Co, Fe, Mn oxides
Even though noble-metal oxides (IrO2, RuO2, PtO2, RhO2) are the

most active materials for the oxygen evolution reaction (OER), low
cost transition metal oxides are typically used in alkaline electrol-
ysis due to their abundancy and relatively high activity and stability.
Thus, nickel, cobalt and iron-based electrodes have been exten-
sively studied in the last years in alkaline electrolysis, while
manganese oxides have received some attention as well [9].

Already in 1981 Hall [50] noted that Ni-based materials can play
a key role as oxygen evolution catalysts in alkaline electrolysis. Until
today, Ni-based oxides are widely used since they show good ac-
tivity and have high resistance to corrosion in the alkaline media
[9]. It has been suggested that several molecular layers of NiO are
lying directly on the metal surface due to exposure to air, while a
compact Ni(OH)2 layer (covering the outermost NiO layer) is in
contact with the alkaline solution [9,51]. It is well established that
potential cycling can cause transformations in the nickel-based elec-
trodes [52] between phases with different oxidation states and
crystallinities [53,54]. Upon continuous cycling in potential, the top
hydrous nickel oxide film is growing, which is responsible for
enhanced activity toward OER [55].

Except from nickel oxide, cobalt and iron oxides are also effi-
cient oxygen evolution catalysts in alkaline media. A comparative
study of Lyons and Brandon [56] on oxidized Ni, Co and Fe anodes
showed that a similar mechanism for OER occurs. Oxidized Ni was
found to be themost efficient electrocatalyst for OER, while oxidized
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Fe is the least efficient. The activity was correlated with the number
of d electrons in the metal cation. In a recent study, Andersen et al.
[57] deposited a series of metal oxides (MnO2, Co3O4, NiO, CuO, FexOy)
on nitrogen-doped carbon nanotubes; they too found that the most
active catalyst for OER in alkaline media is NiO.

Combining Ni with a second element has shown significant im-
provements in electrode performance. The preparation method can
have a significant effect on the morphology of OER electrocatalysts,
thus affecting both the activity and the stability during oxygen evo-
lution [58] while the nature of the substrate also can affect the OER
performance. Perez-Alonso et al. [59] prepared several Ni—Fe elec-
trodes on different substrates (i.e. nickel foam, stainless steel mesh,
nickel mesh, nickel sheet) and found that both the Ni/Fe compo-
sition and the nature of the substrate can control the activity for
OER. As shown in Fig. 3b, using nickel foam and steel mesh as sub-
strates enabled deposition of thin but homogeneous electrodes (as
evidenced by the SEM images of Fig. 3a) and hence OER activity is
larger compared to the case of nickel sheet and nickel mesh. Fur-
thermore, the incorporation of Fe2O3 in the layer enhanced the OER
activity significantly. In agreement with this, amorphous Ni—Fe oxide
nanoparticles supported on carbon (NiyFe1−yOx/C) have also been re-
ported to exhibit higher performance than NiOx/C [60].

Addition of Co and Fe can result in reduced overpotential losses,
withNiFe(OH)2 as aparticularlypromisingmaterial [61]. Trześniewski
et al. [62] carried out a systematic spectroelectrochemical study of
the OER activity of Ni(Fe)OOH). Surface enhanced Raman spectros-
copy results showed thatNi(Fe)OOHgets charged before the reaction
starts, and that those negatively charged sites act as OER precur-
sors. The authors propose that the formation of those “active oxygen”
sites, of which the chemical identity is yet unclear, occurs via a
deprotonation process, which strongly depends on the pH of the
electrolyte and thus has an important effect on catalytic activity in
strongly alkaline environments.

Zhang et al. [63] co-deposited Co and Ni as hydroxides on a nickel
plate by cathodic electrodeposition and found that the Co content
affects the activity for OER (optimal Co loading was between 42 and
47%), but does not change the reaction mechanism. Wang et al. [64]

investigated the OER in alkaline medium on a Ni(OH)2 electrode
modified by cobalt coating, and found that the presence of cobalt
can increase the OER activity promoting full charge of the electrode.

Chi et al. [65] have found that Ni—Co alloys have better
electrocatalytic properties for oxygen evolution compared to pure
Ni. Ternary alloys have also been used. For example, Plata-Torres
et al. [66] prepared several metallic alloys containing Ni, Co, Mo and
Fe by mechanical alloying. They found that Ni—Co—Mo alloys had
better activity toward OER compared to Co—Ni, Co—Mo and Ni—Mo
alloys. Continuous potential cycling altered the surface active sites
of the Ni—Co—Mo alloys thus increasing OER activity. However, the
same treatment was not effective for Ni—Co—Mo—Fe alloys. Sadiek
et al. [67] achieved enhanced OER activity using glassy carbon and
Au electrodes modified with binary catalysts composed of nickel
oxide nanoparticles and cobalt oxide nanoparticles. The binary-
modified electrodes exhibited better activity and stability compared
to the individual oxide-modified electrodes.

From the early investigations on oxygen evolution catalysts for
use in metal air batteries and alkaline water electrolysis, nickel co-
baltite (NiCo2O4), which is a type of spinel oxide, has been proposed
as amaterial with good performance [68]. Investigations in the fol-
lowing years with NiCo2O4 as OER catalysts have shown that the
preparationmethodhasa significant effect bothon theelectrocatalytic
activity [69–71] and on the mechanical properties [70].

Spinel type oxides have been widely investigated for OER in al-
kalinemedia. Oxygen evolution on NiCo2O4 and Co3O4 films prepared
by spray pyrolysis has been reported to follow similar mechanis-
tic paths and Singh et al. [72] reported that the reaction occurs
preferentially on the Co(IV) sites. However, this is in contradiction
with more recent studies where the Co oxidation state is Co(II)
and Co(III), such as cobalt hydroxide, Co(OH)2, cobalt oxyhydroxide,
CoOOH and cobalt oxide; Co3O4 have in general shown sufficient
electrocatalytic activity for the OER [73]. The efficiency of the spinel
type Co3O4 can be also enhanced by the incorporation of addition-
al metal ions, such as Zn [74], Cu [75–77], Fe [78], Mn [79]. Similarly,
enhancement of the spinel oxide NiCo2O4 has been reported by Fe
substitution in the A-site (FexNi1−xCo2O4) [80]. Tan et al. [81] used

Fig. 3. (a) SEM images of the Ni75Fe25 (Ni/Fe ratio of 75/25) on three different supports: stainless steel mesh (Sm, upper panel), nickel sheet (Ns, intermediate panel), nickel
mesh (Nm, lower panel), (b) anodic steady-state polarization curves of Ni75Fe25 electrocatalysts on the different supports. Scan rate = 1 mV s−1, KOH = 30 wt%. (a) shows a
higher amount of discontinuities on the film structures when the meshes are used as substrates. (b) shows that the bare substrates exhibit moderate OER activity, lower
than that of the Ni/Fe-modified electrodes. Nickel foam and steel mesh as substrates reduce the overpotentials, while this is not the case for nickel sheet or mesh sub-
strates. Reprinted from reference 59 with permission of Elsevier.
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the co-precipitation method to synthesize a series of partially sub-
stituted cobaltite spinels MxCo3−xO4 (M = Ni, Cu, Zn, Mn) and
investigated their electrocatalytic properties for OER in 0.1 M KOH.
The results of this study (Fig. 4) showed that all the cobaltite spinel
electrodes have better performance than the metal Ni electrode at
given potentials, while the ZnCo2O4 and Cu0.9Co2.1O4 electrodes out-
perform NiCo2O4 and MnCo2O4 for OER. The high performance of
ZnCo2O4 is attributed to its high Co surface content, according to
XPS findings. Finally, all the cobaltites of this study showed excel-
lent stability after operation for 200 hours at 0.1 A cm−2 [81].

New mixed oxides with molecular formula MMoO4 (M:Mn, Fe,
Co, Ni) and M2(MoO4)3 (M: Fe, Cr) have been recently developed as
active OER catalysts. Substituted ternary oxides were found to be
more active than Co-based spinel oxides [82–90]. Regarding
manganese-based oxides, recent detailed [91] investigation for OER
activity showed that in addition to the oxidation states, structural
changes, such as concentration of oxygen point defects and length
of the Mn—O bond, also play a significant role on the activity, since
crystalline α-Mn2O3 has better performance compared to Mn3O4.

All these studies have clearly shown that Ni-based oxides out-
perform Fe, Co andMn-basedmaterials. The activity of Ni and nickel
hydroxides can be further increased by dopingwith a second element
(Fe has been identified as the best choice) or by selecting proper
substrates (nickel foam has exhibited superior activity). Recently,
Diaz-Moralez et al. [92] attempted to rationalize the OER activity
of doped Ni-based double hydroxides, in order to fundamentally in-
vestigate the improving effect of Cr, Mn, and Fe on the catalytic
activity of the Ni-based double hydroxides and the deleterious effect
of Co, Cu, and Zn. According to their DFT-based analysis, the effects
of Fe, Mn, and Cr doping are different, as Fe and Mn are the active
sites in NiFeOOH and NiMnOOH while Ni is the active site in
NiCrOOH. Their computational results were compared with exper-
imental data and suggested Ni—Fe double hydroxide as the most
promisingmaterial, the activity and stability of which could be higher
than that of IrO2, depending on the preparation method. However,
according to McGrory et al. [93], the activity of transition metal
oxides is inferior compared to IrO2. Following a benchmarking pro-
tocol for evaluating OER catalysts in terms of catalytic activity,
stability, electrochemically active surface area, Faradaic efficiency,
the authors of this study found that a current density of 10mA/cm2

can be achieved at overpotentials of 0.35–0.43 V using NiOx, CoOx,
NiFeOx, NiLaOx, NiCuOx, NiCeOx, CoFeOx, CoP, while the same current
density is achieved at overpotential of 0.32 V for the case of IrO2.

However, the significantly lower cost of Ni-based materials com-
pared to IrO2 can compensate this small difference in activity.
Furthermore, the same study reported a gradual loss in the OER of
activity of IrO2 after 2 hours operation at 10 mA/cm2, thus suggest-
ing that development of highly active and stable OER catalysts is
still an open challenge.

3.1.2. Perovskites
Perovskites,mixedmetal oxides of the general formula ABO3, are

materials with high structural stability and a wide range of possi-
ble compositions, as the A and/or B cations can partly be substituted
by additional elements of different valences and/or sizes. Owing to
their interesting properties and tunability with respect to compo-
sition, they have received widespread attention for applicability in
catalysis [94–98].

In the perovskite structure ABO3, A is the larger and B is the
smaller cation. Cation A can be a lanthanide, alkaline or alkaline-
earth element and the cation B is a metallic element with 3d, 4d
or 5d configuration. In this structure, shown in Fig. 5, A and O form
a cubic closest packing and B is contained in the octahedral voids
in the packing, thus the B cation is 6-fold coordinated and the A is
12-fold coordinated by oxygen anions.

Partial substitution of the cations introduces vacancies in thema-
terials, and this offers the possibility to tune the physicochemical
properties and in particular the catalytic activity of the materials
[84–88]. In general, substitution of the A-sitemainly affects the ability
of oxygen sorption, while substitution of the B-site influences the
reactivity of the sorbed oxygen [94,99–101].

Bockris and Otagawa were the first to report the activity of
perovskites for OER in 1984 [102]; they related it with the weak
bond of OH− on the surface of the catalyst. Since then, several
perovskites with the ABO3 structure have been tested for OER and
ORR in alkaline media, mainly as bifunctional catalysts for batter-
ies. The majority of the studies involve materials of the type LaMO3

(M: Ni, Mn, Co, Fe). Among them, lanthanum cobaltites, LaCoO3, have
shown interesting OER activity, which can be further improved by
substitution, e.g. by Sr or Ca for La in the A-site or by Fe, Mn and Ir
for Co in the B-site [100,103–110].

In parallel with experimental studies, several theoretical ap-
proaches have focused on identifying the intrinsic material
characteristics that control activity. In 1980 Matsumoto et al.
[111,112] correlated a broad σ* band in the lattice and a high

Fig. 4. Steady-state polarization curves for the OER in 1M KOH. Reprinted from ref-
erence 81 with permission of Elsevier.

Fig. 5. Structure of ABO3 perovskite oxide. Reprinted from reference 94 with per-
mission of Elsevier.
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oxidation state of the B cation with a high activity for oxygen
electrocatalysis. Afterward, Trasatti in 1984 [113] proposed a volcano-
shaped relation between the overpotential and the enthalpy change
of the lower-to-higher oxide transition. Bockris and Otagawa [102]
tried to correlate the electrocatalytic activity with chemical bonding
properties. Their experimental results, using various ABO3 perovskites
with La in the A site and several transition metals (Ni, Co, Fe, Mn,
Cr, V) in the B site, showed that the electrocatalytic activity in-
creases as the B—OH bond strength decreases and as the number
of electrons occupying the antibonding orbitals of B—OH in-
creases. Moreover, they observed increase in the catalytic activity
with the weakening of the M–O bonding in the lattice (thus with
the introduction of oxygen vacancies), in consistency with the
predictions of Trasatti [113] that the degree of nonstoichiometry
significantly affects the electrocatalytic activity.

Several years later in 2011, Man et al. [114] used first
principles calculations for modeling the thermochemistry of elec-
trochemical reactions. According to this method, a prerequisite for
the ideal catalyst (which should be able to facilitate water oxida-
tion at potential just above the equilibrium one) is that the different
charge transfer steps have reaction free energies of the same mag-
nitude at zero potential. Since this prerequisite does not apply to

real catalysts, Man et al. [114] created free energy diagrams for
OER at standard conditions on selected perovskites which show
different binding strengths and estimated the size of the potential-
determining step for each material. They thus [114] concluded that
the OER activity of a wide range of oxides (perovskites, spinels, rutile,
rock salt, bixbyite) is related to the difference in binding energies
between the reaction intermediates HOO* and HO*. They pro-
posed the parameter (ΔGO* − ΔGHO*), i.e. the difference between the
adsorption energies of O* and HO*, as an indicator for the univer-
sal description of activity in oxygen electrocatalysis. As shown in
Fig. 6b, Suntivich et al. [115] examined systematically a decade of
transition metal oxides and showed a volcano-type dependence of
the OER activity with the occupancy of the 3d orbitals with eg sym-
metry for the transition metal. The shapes of the 3d orbitals are
illustrated in Fig. 6b [116,117]). Vojdovic and Nørskov [118] worked
further in these directions and proposed that the oxygen adsorp-
tion energies are also related with the t2g levels (Fig. 7).

These findings opened the way for the design of materials with
targeted properties to maximize the OER activity. According to the
findings of Suntivich et al. [115] the maximum OER activity would
require eg occupancy close to unity and high B-site oxygen cova-
lency. In the LaMO3 series, M = Cr, Mn, Fe, Co or Ni, the formal

Fig. 6. (a) The B cations (typically transition metal) in the perovskite structure are at the center of the oxygen octahedron. The 3d orbitals fall into two groups: eg orbitals
consist of the 3d orbitals x2–y2 and z2, while the xy, yz and xz constitute the t2g orbitals. The t2g orbitals have lower overlap with the neighboring 2p orbitals of the oxygen
ions, and thus they have lower energy because the Coulomb energy is lower. The 3d orbitals x2–y2, xy, yz and xz have four lobes centered in the plane indicated in the
orbital label (e.g. the lobes of 3d x2–y2 lie along the x and y axes). The 3d orbital z2 has a unique shape with two lobes along the z axis and a belt centered in the xy plane.
Adapted from reference 117. (b) The relation between overpotential at 50 μA cm−2 and the occupancy of the eg-symmetry electron of the transition metal B in the ABO3

structure. x = 0, 0.25 and 0.5 for La1−xCaxFeO3. Reprinted from reference 115 with permission of The American Association for the Advancement of Science.

8 F.M. Sapountzi et al. / Progress in Energy and Combustion Science 58 (2017) 1–35



occupation of the 3d orbitals in the most active oxides is: LaCoO3

(t2g4eg2 ↔ t2g5eg1), LaMnO3 (t2g3eg1) and LaNiO3 (t2g6eg1), (Table 2)
[119,120]. The central role played by the electron density local-
ized on the eg orbitals, close to one, is manifested. The fact that the
highest occupied orbitals, eg, participate in σ-bonding with the
surface-anion adsorbates explains their relevance [121]. In an oc-
tahedral coordination, the d orbitals fall into two groups: three t2g
orbitals, that have lower overlap with the neighboring 2p orbitals
of the oxygen ions (Fig. 8A), and thus they are more stable because
the Coulomb energy is lower and the eg orbitals that are oriented
toward the oxygen atoms (Fig. 8B).

A material with stoichiometry Ba0.5Sr0.5Co0.8Fe0.2O3−δ (BSCF) was
identified as optimal by Suntivich et al. [115]. BSCF exhibits one
order of magnitude higher intrinsic activity for OER in alkaline
media than IrO2. Similarly, high OER activity has been observed
with SrCo0.8Fe0.2O3−δ [122,123]. Double perovskites of the form
(Ln0.5Ba0.5)CoO3−δ (Ln: Pr, Sm, Gd, Ho) have been also proposed as a
family of cobalt-containing OER catalysts with high activity and sta-
bility, explained by the presence of their O p-band center neither
too close nor too far from the Fermi level. The authors of this study
suggest that the double perovskites have greater stability com-
pared to BSCF, which becomes amorphous during OER [124]. A novel

Fig. 7. The descriptor choices as proposed by Vojvodic and Nørskov [116] using DFT
calculations on the basis of the findings of Suntivich et al. [113]. Figure shows that
the t2g symmetry occupation or the adsorption energy of oxygen can be also a de-
scriptor (OER activity increases with high t2g occupation). Reprinted from reference
118 with permission of The American Association for the Advancement of Science.

Table 2
Electronic configuration, magnetic and electric properties, optical gap and current densities (IOER) for the LaMO3 series, M = Cr, Mn, Fe, Co or Ni. IOER for OER at 2.4 V (vs Zn).
Adapted from reference 126 with permission of Elsevier.
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tetragonal ball-milled SrNb0.1Co0.7Fe0.2O3−δ (SNCF) perovskite devel-
oped recently by Zhu et al. [125] showed excellent activity for OER
in alkaline solutions. The superior performance of this material com-
pared to BSCF was attributed to several factors, such as the presence
of Co2.8+ with an optimal eg orbital filling (t2g5eg1.2), the good charge-
transfer characteristics, high affinity for OH− adsorption and favorable
O2 desorption characteristics.

The intriguing correlation of the activity of cobaltites, usually the
most active perovskites, with composition seems due to the pres-
ence of conflicting electronic interactions. Three electronic states,
low-spin (LS) t2g6eg0, high-spin (HS) t2g4eg2 and intermediate-spin
(IS) t2g5eg1 states, compete in stability. The electronic structure and
Co—O bonds strongly depend on the dominant orbital configura-
tion (Fig. 9) [126]. Current ab-initio calculations try to identify if the
exclusive stabilization of the t2g5eg1 electronic state for the cobalt
atoms appears uniquely in the most active catalysts.

An in-depth study of the magnetic structure within the most
active perovskites for oxygen evolution reaction by Gracia et al. [127]
shows that the ground states preferentially settle with an ex-
tended antiferromagnetic orbital ordering. The combination of
parallel and antiparallel exchange interactions appears related with
the electro-catalytic activity. In their ground state, the calculated
perovskites present space-separated charge transport channels de-
pending on the spin orientation. Comparing the spin localization
with reported activities, authors report a direct correlation between
the maximum spin polarization accumulated on the metal/oxygen
atoms, in the bulk material, and the catalytic activity. The possible
implications of such observations are discussed in terms of mag-
netic interactions. During oxygen evolution in water electrolysis,
reactants and products do not preserve spin. For triplet state oxygen
to evolve, the catalyst, anode, can speed up the reaction if it is able
to balance themagnetism of the oxygenmolecule by extracting elec-
trons with an opposite magnetic moment, conserving the overall
spin. The presence of conflicting electronic interactions indicated

by the maximum spin polarization helps in the selective extrac-
tion of oriented electrons [127].

Another innovative recent study concerns the development of
ordered oxygen-deficient perovskites with molecular level poros-
ity (A2B2O5), which have been suggested as a promising new class
of oxides for OER electrocatalysis [128]. This oxygen-deficient struc-
ture, shown in Fig. 10a for Ca2Mn2O5, is described as a square pyramid
of MnO5 with a zigzag structure, resulting in molecular level po-
rosity due to the oxygen vacancy (one oxygen atom is missing from
the octahedral MnO6 subunit along the directions normal to the ab
plane). The oxygen-deficient Ca2Mn2O5 showed better OER activi-
ty than the normal CaMnO3 perovskite (Fig. 10b). The high OER
activity of the former was attributed to (a) the unit cell structure,
which favors the transport of OH− ions, (b) to the electronic con-
figuration of the B-site manganese cation with high spin electron
occupying eg orbitals, (c) to the easier formation of bonds between
Mn3+ and OH− through the oxygen vacancies.

Even though it has become clear from theoretical studies that
the electronic structure of perovskites affects the OER activity, DFT-
based material screening is an ab initio method which does not
consider kinetics. Thus, this type of screening is not conclusive and
represents only a first step for material optimization. Further in-
vestigations (i.e. ab-initio kinetics studies) should be performed in
order to reach firm conclusions about the reaction mechanism.
Finally, subtle details in the experimental procedures, such as the
preparation of catalyst inks with different perovskite/carbon ratios,
can result in misleading observations during experimental OER ma-
terials screening. Carbon is typically added in the catalytic ink in
order to enhance the electronic conductivity of the catalytic layer.
However, it has been recently reported that the presence of carbon
can also enhance the OER activity of selected perovskites [129,130].
The nature of the interaction between different perovskites and
carbon is still not clear, but it can be helpful for the development
of more efficient OER catalyst designs. However, fundamental studies
focusing on the understanding of the intrinsic properties of
perovskites should be carried out with carbon-free catalytic inks.
On top of this, carbon-free materials are preferable for practical ap-
plications, since carbon shows poor stability under electrolysis
conditions.

3.1.3. Novel structures
Identifying the optimal composition for OER in alkaline elec-

trolysis at the molecular level is one parameter, but optimizing the
structure of the electrocatalyst is also key for their performance. For
example, the morphology of the electrocatalyst can have pro-
found influence on e.g. the detachment of oxygen bubbles from the
surface, which in turn affects the availability of active sites [131].
Therefore, much scientific interest has been lately focused on the

Fig. 8. (A) Depopulation of the t2g orbitals after a low-spin (t2g6eg0) to high-spin
(t2g4eg2) transition; and (B) relocation of the electronic density in the eg orbitals. Elec-
tronic density obtained from DFT (GGA + U) calculations in LaCoO3.

Fig. 9. Top: DFT (GGA + U) predictions for different LaCoO3 spin states. Bottom: Density of states (DOS) versus energy in eV for LS AFM HS, and FM IS orderings. AF: anti-
ferromagnetic, FM: ferromagnetic, HS: high spin, LS: low spin. Reprinted from reference 126 with permission of Elsevier.
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development of novel structures that combine a large surface area
with good electronic conductivity and optimal porosity.

The recent development of nickel–cobalt layered double hy-
droxide (LDH) nanosheets deposited onto a nickel foam support has
led to electrodes with excellent performance for OER both in terms
of activity and stability, related to their intrinsic layer structure and
redox characteristics [132]. Wang et al. [133] developed a novel hi-
erarchical Ni—Co oxide nanostructure, which is composed of small
secondary nanosheets grown on primary nanosheet arrays. This
structure allows for a Ni3+-enriched surface, which facilitates the for-
mation of NiOOH active sites and also offers high surface area. Thus
these materials, showed a low overpotential of 0.34 V at 10mA cm−2,
while they performed better than Co3O4 nanorods, Co3O4 nanosheets
and Ni—Co oxide nanorods. Au/NiCo2O4 nanoarrays have also ex-
hibited good OER activity and high stability in the alkaline
environment [134].

An innovative core-ring structure of NiCoO4 nanoplatelets has
been developed by Cui et al. [135] with strong Co enrichment in
the core and stoichiometric ratio of Ni:Co = 1:2. The material was
introduced as an OER electrocatalyst in alkaline water electrolysis
and exhibited superior performance compared to ordinary NiCoO4

and Co3O4 prepared by alternate methods. The overpotential is 0.3 V
at a current density of 0.1 A cm−2. This extremely high activity is due
to the increased active surface area and the large number of active
surface Co atoms.

The use of carbon-based structures (nanotubes, nanosheets,
nanowires, carbonaceous microspheres) as the support of OER
electrocatalysts has been explored in several studies, since thesema-
terials are electronically conductive and provide large surface
areas [57,136–146]. For example, the deposition of cobalt oxide
nanoparticles onmultiwall carbon nanotube–modified glassy carbon
yields active OER electrocatalysts in alkaline media with good sta-
bility and durability, as reported by Raoof et al. [137]. Another
successful example in this direction is the use of graphene oxide
nanosheets as the support for dispersedMn and Co-substituted Fe3O4

nanoparticles [138], where the cobalt oxide and themanganese oxide
ensured high oxygen evolution and reduction activity respective-
ly, while the bulk Fe3O4 ensured the electronic conductivity together

with the graphene nanosheets, which also reduced the external
transport resistance.

An efficient, robust and economic nanostructured OER
electrocatalyst was also developed by Gao et al. [147] based on
α-Ni(OH)2 hollow spheres. Nanoparticles of α-MnO2 embedded in
a matrix with abundant micropores showed also good OER activ-
ity due to improved reactants accessibility to the active sites [148].
However, Selvakumar et al. [149] showed that the optimal shape
of α-MnO3 is nanowires, which, compared to nanotubes and
nanoparticles, showed the best performance probably due to fa-
cilitated access of the reactants to the surface.

Fe/Co metal–organic-frameworks (MOFs) have been proposed
as a promising structure, since the high specific area and abun-
dantmicropores in thesematerials are beneficial for oxygen diffusion
and catalytic sites utilization [150]. A current density of 3 mA cm−2

at 0.9 V vs Ag/AgCl was obtained when the MOF was mixed with
carbon black, which is 79 times higher than that when only carbon
black was used as reference material.

Finally, nanostructured perovskites consisting of
nonstoichiometric CaMnO3−δ oxides in the form of microspheres
and nanoparticles made by thermal decomposition of carbonate pre-
cursors and by the Pechini route respectively have been described
by Du et al. [151]. It was found that the presence of oxygen vacan-
cies is related to improvement in performance, with reduced
overpotentials and high current densities. The oxygen-defective
CaMnO3−δ with δ close to 0.25 manifested the highest OER activity,
with potential of ∼1.6 V vs RHE at 50 μA/cm2

ox normalized to elec-
trochemical activity surface area.

Ruthenium oxide, RuO2, is one of the most active electrocatalysts
for the OER, but alkaline electrolysis mainly uses transition metal
catalysts due to their significantly lower cost and sufficiently high
activity. However, Liang et al. focused their recent study on RuO2

and published a way to improve its stability in the alkaline envi-
ronment [152]. Using wet impregnation on a CeO2 support, they
prepared RuO2/CeO2 composite electrocatalysts, where the defec-
tive nanosized CeO2 was synthesized through an explosion reaction
using Ag@CeO2 core-shell nanospheres as precursors. They found
that the defective CeO2-supported RuO2 has improved OER activity

Fig. 10. (a) Unit cell of oxygen deficient perovskite Ca2Mn2O5. The ordered oxygen vacancy along directions normal to the ab plane is shown. Normally, each Mn atom should
be bonded with 6 oxygen atoms and form an octahedral. However, in the present case one oxygen is missing along the direction of the ab plane (each Mn atom is bonded
with 5 oxygen atoms). Due to this oxygen vacancy, a square pyramid MnO5 subunit was obtained. (b) Comparison of the mass activities for CaMnO3 and Ca2Mn2O5 perovskites
at various applied potentials in 0.1 M KOH. Carbon was added to the perovskite in order to increase electronic conductivity. Reprinted from reference 128 with permission
of American Chemical Society.
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compared to pristine RuO2 and enhanced stability under alkaline
conditions of 0.1 M KOH. The enhanced performance (activity and
stability) was attributed to “spillover” of oxygen species from CeO2

to the RuO2 surface during the OER, which facilitates water oxida-
tion. These results may open a new way for the employment of the
highly active Ru-based materials in alkaline electrolysis. However,
cost compensation with the commonly used Ni and Co based ma-
terials should be taken into account.

To conclude, several nanostructuredmaterials have been devel-
oped and showed highOER activity, owing to their high surface area.
Enhanced performance can be obtained either by nanostructuring
the OER active phase or introducing the active phase into C-based
structures with high surface area. The latter method could be con-
sidered as more advantageous due to simplicity in materials
preparation, but on the other hand carbonmaterials can suffer from
corrosion under OER conditions. In view of materials optimization,
the first step has been taken since the progress in computational
chemistry has already led to the identification of promising
perovskites with high intrinsic OER activity and excellent stability.
As a next step, these findings should be combined with ab-initio
kinetics studies, because only such integrated studies can provide
reliable conclusions for mechanistic considerations. Further devel-
opments in thisfield togetherwith the recent advances innanoscience
are expected to play a key role in the design of novel OER catalysts
and the replacement of Raney nickel in alkaline electrolysis (Fig. 11).

3.2. PEM electrolyzers

The state-of-the-art anodematerials for PEMelectrolysis aremixed
oxides composed of IrO2 and RuO2. The high activity of Ir and Ru has
been apparent from the early investigations of water electrolysis in
acidicmedia, since Damjakovic et al. [153] in themid-1960s and ten
years later Miles and Thomason [154] compared the OER catalytic
activity of differentmetals and binary alloys in acidic solutions. Even
though these primary investigations started from catalysts in the

metallic form, oxide films form on the surface at high anodic poten-
tials duringOER [155]. Interestingly, Ru (RuO2) and Ir (IrO2) outperform
Pd, Rh, Pt, Au, Nb for OER in acidic solutions [153–156]. The lower
electrocatalytic activity of Pt and Pd is caused by the high resistance
oxide film that is formed on the surface of these metals; RuO2 and
IrO2, on the other hand, exhibit high electronic conductivity [20]. In
these oxides, the metal–metal distance and the radius of the cation
have values that allow for overlap of the inner d-orbitals that are re-
sponsible for the electron conduction [157].

Although RuO2 and IrO2 exhibit similar OER activity, Ru has the
advantage of higher abundance in nature compared to Ir. However,
RuO2 suffers from corrosion/dissolution during oxygen evolution in
acidic environments (forming RuO4 [158]), but this can be elimi-
nated by the use of dimensionally stable anodes (intermixing RuO2

with TiO2) [159]. On the other hand, IrO2 also experiences corro-
sion but to a much lesser extent [160,161]. Both materials have been
the focus of the majority of PEM water electrolysis studies.

Aiming at more cost-affordable PEM electrolysis systems, many
catalyst alternatives have been proposed lately, basedmainly on three
routes (Fig. 12), which are discussed in the following paragraphs:

(i) increasing the stability of the less expensive Ru, by using it
in several binary or multi-metallic oxides (the same approach
is applicable to Ir, of course),

(ii) utilization of active supports with large surface areas for
dispersing the active catalytic phase in order to decrease the
catalyst loading,

(iii) decreasing the loading of the high cost catalysts by using al-
ternative preparation methods and catalyst structures.

3.2.1. Mixed oxides
Binary oxides of the type IrxRu1−xO2 exhibit considerable activ-

ity and stability during OER [162–166], with Ir0.6Ru0.4O2 having been
identified as the optimal combination byMarshall et al. [165]. Fig. 13
compares the electrochemical behavior of Pt, IrO2, RuO2 and

Fig. 11. Progress in the development of OER electrocatalysts for alkaline electrolysis, as a result of intense interaction between materials science, computational chemistry
and nanoscience.

Fig. 12. Strategies for reducing noble metal utilization in PEM OER electrocatalysis.
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IrO2–RuO2 mixed oxides in an acidic supporting electrolyte (0.5 M
H2SO4). The best onset potential is observed with RuO2, while the
activity of Pt is much lower than that of both IrO2 and RuO2. Intro-
ducing Ir in the RuO2 catalyst yields sufficient electrocatalytic activity,
while stability is also maintained even after prolonged operation
during PEM water electrolysis at 1 A cm−2 at 25 °C [164].

Suitable OER rates and sufficient stability have been also ob-
tainedwith othermixed oxides, such as RuxIryTazO2 [165], RuxIryCozO2

[166–168], RuxIrySnzO2 [169,170], SnxRu1−xO2 [171], RuxNb1−xO2 [172],
Ru1−xNixO2−y [173], IrxPt1−xO2 [174], IrxSn1−xO2 [175], IrxTiyPtzO2 [176].
Although the synergistic mechanism which accounts for the en-
hancement in stability and activity is not yet fully understood,
alterations in the electronic structure, electronic interactions and
interatomic spacing have been mentioned to play a key role in the
OER reaction [21]. Even though these investigations led to the de-
velopment of cheaper catalysts with favorable catalytic stability and
activity, there are limits to the addition of the inexpensive metal
oxides since the active surface area and the electronic conductiv-
ity decrease as the loadingwith cheapermetal oxides increases [177].

Neyerlin et al. [178] screened several platinum containing binary
Pt—M (M: Ir, Re, Ru, Pd) and ternary Pt—Ru—M (M: Ir, Pd) catalyst
libraries for their OER activity in acidic media. As shown in Fig. 14,
their results revealed Pt20Ru80, Pt20Ru60Ir10 and Pt20Ru70Pd10 as prom-
ising OER electrocatalysts.

Fluorine doped oxides have been proposed lately as suitable low
cost OER catalysts [171,177,179–181]. Kadakia et al. [177] showed
that F-doped Ir0.3Sn0.7O2 (10 wt% F) has better electrochemical per-
formance, current density, polarization resistance and Tafel slope
(the slope from the linear region in the plot of overpotential versus
ln(i/io), where io is the exchange current density; unit for Tafel slope
is V/dec) than the undoped binary electrocatalyst, while its perfor-
mance is comparable to that of commercial IrO2 (Fig. 15).

3.2.2. Supports for OER catalysts
To reduce the amount of precious metal in an OER catalyst,

nanostructures in combination with large surface area supports can
be used for increasing the catalytic activity. The support should
combine high surface area with high electronic conductivity and
suitable pore structure, which allows the transport of reactants and
products to/from the catalytic active sites. Carbon substrates, com-
monly used in fuel cell technology (carbon black, graphitized carbon),
suffer from corrosion under the high anodic overpotentials of OER
during PEM electrolysis. Coating with Ti can prevent oxidation of
the carbon paper according to Slavcheva et al. [161,182].

Fig. 13. Polarization curves with different anodes, where potential (versus the re-
versible hydrogen electrode (RHE)) is plotted on the y-axis and current density on
the x-axis. Data were collected by varying the potential with 5 mV s−1. Electrolyte:
0.5 M H2SO4. Reprinted from reference 164 with permission of Elsevier.

Fig. 14. Activity map of two ternary systems Pt–Ru–M supported on C. Left figure system Pt–Ru–Ir, Right figure system Pt–Ru–Pd. The color of the circles encodes the re-
activity at 1.48 V vs RHE (red: poor activity, green: high activity). Adapted from reference 178.

Fig. 15. Polarization curves for undoped and F-doped Ir0.7Sn0.3O2 and also for com-
mercial IrO2. The current density is plotted on the y-axis and the potential (versus
the normal hydrogen electrode-NHE) on the x-axis. Data were collected by varying
the potential with 1 mV s−1. Figure shows both the as-received potential data values
(uncorrected) and the potential values after removing the ohmic-drop compensa-
tion (iR corrected). Experiments conducted in 1 N H2SO4, 40 °C. Reprinted from
reference 177 with permission of The Electrochemical Society.
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The same group attempted to use IrO2-free OER catalysts by using
Pt in combination with low cost transition metals instead. The bi-
metallic electrocatalysts were synthesized following the sol–gel
method and supported on a mechanically treated titanium-based
support with a total metallic loading of 20 wt%. According to the
authors, the nonstoichiometric TiOx support enhances the OER ac-
tivity of bimetallic Pt—Fe and Pt—Co catalysts compared to pure Pt,
through a synergetic effect related with hypo-hyper-d-electronic in-
teractions [183]. In general, the hypo d-electron character of the
support has the ability to interact with hyper d-electron metals and
the magnitude of this interaction varies when e.g. Pt is alloyed with
other metals. The d-band serves as the bonding and adsorptive
orbital, while electronic density defines the overall kinetics and re-
action rate. Thus, this hypo-hyper d-electronic interactive effect can
affect significantly catalysis and electrocatalysis [184].

Moreover, the materials were found to be stable after PEM elec-
trolysis under 50 mA cm−2 at 80 °C for 6 hours. Based on the idea
of the beneficial metal–support interactions, Paunovic et al. [185]
prepared electrocatalysts containing a mixed Co—Rumetallic phase
deposited on activated multiwall carbon nanotubes (MWCNTs) and
TiO2 anatase. The presence of mixed hypo-hyper d-oxides on the
catalyst’s surface (CoO–TiO2, RuO2–TiO2) was held responsible for
the increased activity.

Alternative materials such as titanium carbide (TiC) [186], tan-
talum carbide (TaC) [187], silicon carbide-silicon (SiC–Si) [188],
indium tin oxide (ITO) [189] and antimony doped tin oxide (ATO)
[190] have also been investigated as oxidation-resistant supports
for OER, in combinationwith iridium catalysts. Among these systems,
TiC has shown promising results since the peak current density at
1.5 V vs RHE with Ir/TiC (20% Ir) is nine times higher than that ob-
tainedwith unsupported pure Ir, thus leading to significant decreases
in cost [186]. Less spectacular, but still indicating ways to reduce
noble metal content, is a study with silicon carbide [188]. The elec-
trochemical activity of IrO2 was found to be improved in the presence
of a Si–SiC support and the activity of samples with 80 wt % loading
of IrO2 was similar to that of the unsupported catalyst. The en-
hancement in the performance was attributed to the improved
surface properties of IrO2 in the presence of the support [188].
Polonsky et al. [187] supported IrO2 on TaC, but the oxidation of TaC

by NaNO3 used in the preparation leads to the formation of a surface
film of NaTaO3 with low conductivity. In order to overcome this
problem, high loadings of IrO2 (higher than 50 wt %) are required.

Puthiyapura et al. [189] showed that the IrO2 loading can be
reduced by the use of ITO or TiO2 supports, without significant losses
in catalytic activity. As shown in Fig. 16, IrO2 (60 wt%)/TiO2 shows
comparable performance to unsupported IrO2, indicating that up
to at least 40% reduction in the use of IrO2 can be achieved in this
way. A similar result was obtained with antimony-doped tin oxide,
ATO, as the support for Ir [190].

Recently, an active and stable IrO2 catalyst supported on a novel
composite support withmixed protonic–electronic conductivity was
reported by Xu et al. [191]. The support was synthesized utilizing
tin doped indium oxides and proton conducting phosphates and then
structured with 3D-ordered hexagonal arrays using polystyrene
spheres as a colloidal template. This composite support had a fa-
vorable specific surface area of 180 m2g−1. The thus obtained
supported IrO2 catalyst showed five times higher catalytic activity
for OER compared to pure IrO2 catalysts during PEM water elec-
trolysis at 80–170 °C. The stability of the catalyst was verified during
a long-term testing under 0.35 A cm−2 at 130 °C for 1150 hours.

3.2.3. Alternative preparation methods and novel structures
OER is a structure-sensitive reaction; according to investiga-

tions of OER activity with RuO2 electrodes sintered at different
temperatures, it appears that the catalytic behavior is controlled by
both the catalyst particle size and the electronic conduction mode
[192,193]. Thus, prerequisite for highly active catalysts is the pres-
ence of optimum-sized crystalline particles (ensuring enough active
sites) which are in good contact with each other (improving elec-
trical conductivity). Moreover, a crystalline tetragonal structure for
IrO2 and RuO2 is preferable for achieving high activity.

Numerous methods have been followed for the synthesis of
these oxides in the form of powders, such as polyol method, Adams
fusion, sol–gel, hydrolysis, precipitation [162–183,185–191]. Alter-
native preparations have been reported as well. Slavcheva et al. [161]
introduced magnetron-sputter deposition of thin films as OER cata-
lysts in PEM electrolysis. Such films represent active and stable
catalysts, also mechanically, and with minimal metal loading

Fig. 16. Polarization curves during PEM water electrolysis using different IrO2-based anodes. Cathode: 20 wt% Pt/C, T: 80 °C; electrolyte: Nafion 115. Reprinted from refer-
ence 189 with permission of Elsevier.

14 F.M. Sapountzi et al. / Progress in Energy and Combustion Science 58 (2017) 1–35



[161,182,194,195]. In these studies, thin Ir films were sputter-
deposited onto a carbon substrate; continuous cyclovoltammetric
treatment resulted in anodically formed IrO2 films (Fig. 17a) [161].
The steady-state polarization curves in Fig. 17b show that oxygen
evolution initiates at 1.3 V. Both these results and long-term sta-
bility tests under 0.3 A·cm−2 at 80 °C indicated that the film with
500 nm thickness has the best performance.

Finally, the introduction of novel core-shell structures in OER cata-
lysts for PEM electrolysis appears of great interest. Nong et al.
[196,197] describe an Ir catalyst formed by an electrochemically
dealloyed IrNi core and IrOx shell. By combining this core-shell cat-
alyst with a mesoporous corrosion-resistant oxide support of
antimony doped tin oxide (ATO) they obtained an efficient OER cat-
alyst, stable (for 20 hours) in the acidic environment. As shown in
Fig. 18, the combined catalyst has both the advantages of the core-
shell architectures and the durability benefits of an oxide support.

3.3. Solid oxide electrolysis

3.3.1. SOE with O2− conducting oxides
Amajor problem, limiting the lifetime of anodematerials in solid

oxide electrolyzers, is the delamination of the oxygen electrode from
the electrolyte (typically yttria-stabilized zirconia (YSZ)). It is the
main reason for degradation and corresponds to physical damages
of the electrode at the anode–electrolyte interface. Anode delami-
nation causes the reduction of the electrochemically active area and
increased ohmic losses. The exact source of this delamination is yet
unclear, but several processes have been identified as responsible
for it, such as morphological changes in the electrode and grain
boundary porosity development in the electrolyte [198–202].
Poisoning of the anode due to chromium present in the steel of
interconnect materials has been also suspected to play a role [203];
however, this possibility was excluded since anode delamination
was also observed after operation without chromium-containing
elements [201].

Several approaches have been proposed in order to mitigate the
problem of delamination, such as (a) the application of alternat-
ing current voltage pulses [204], (b) the addition of small amounts
of oxides with cations exhibiting multiple valence states to the elec-
trolyte, to increase electronic conductivity and thus decreases the
tendency of delamination of the anode [205], (c) the modification
of YSZ by sol–gel coating with a discontinuous Mn–YSZ layer with
submicron pores to prevent high pressure oxygen build up [206].

Similar as in solid oxide fuel cells, perovskites are used in the
SOE oxygen electrodes. Among them the most common material
is the composite of strontium doped lanthanum manganite (LSM)
and YSZ [24]. LSM (LaxSr1−xMnO3) is used since it has good thermal
and chemical compatibility with YSZ, good electronic conductivi-
ty and reasonable catalytic activity for oxygen evolution [207]. LSM–
YSZ composites are used, both in order to improve activity by
increasing the length of the three-phase-boundaries (LSM pro-
vides the pathway for electrons, while YSZ for oxygen ions and
thus the contact region between gas–electrode–electrolyte is in-
creased), and to improve the adhesion between the anode and the
YSZ electrolyte [208].

It has been reported that LSM–YSZ anodes can be activated by
cathodic polarization (fuel cell operation), while anodic current po-
larization (electrolysismode) causes deactivation of LSM–YSZ anodes.
The activation observed after cathodic polarization has been asso-
ciated with partial reduction of LSM, but this activated state cannot

Fig. 17. (a) Consecutive cyclic voltammetry curves (200 scans) of a 1000 nm thick film showing the progressive oxidation of Ir to IrO2. Scan rate 100 mV s−1, T: 20 °C.
(b) Steady-state polarization curves during water electrolysis using IrO2 films of different thicknesses. T: 80 °C. Reprinted from reference 161 with permission of Elsevier.

Fig. 18. Constant current chronopotentiometric stability measurements at a current
density of 1 mA cm−2 using pure IrOx nanoparticles supported on commercial an-
timony doped tin oxide (ATO) (red line), IrNiOx core-shell nanoparticles supported
onmesoporous ATO (black line). T: 25 °C, 0.05MH2SO4, 1600 rpm. Ir loading is 10.2mg
cm−2. Adapted from reference 196.
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be maintained under anodic polarization [209–211]. Several works
have been focused on the improvement of the behavior of LSM-
based anodes. Detailed electrochemical impedance spectroscopy
characterization of LSM–YSZ byWang et al. [212] showed that pro-
cesses related with the dissociative adsorption of oxygen along the
LSM surface andwith gas phase diffusion depend on the partial pres-
sure of oxygen and on the porosity of the electrode. Yang et al. [213]
showed that a porous network-like LSM–YSZ made by impregna-
tion could have reduced electrode polarization resistance. The
incorporation of Ag or Pd has been shown to improve the electro-
chemical performance of LSM–YSZ anodes [214,215]. Enhancement
in the performance and stability has been also achieved by intro-
ducing nanoparticles of gadolinia-doped ceria (GDC) in the LSM
electrode [216] or by using Pd-infiltrated LSM–GDC composites [217].

LaCoO3-based substituted perovskites have been suggested as al-
ternative materials for the oxygen electrode of SOEs, such as
La0.6Sr0.4Co0.2Fe0.8O3−δ (LSCF) [218] and La0.6Sr0.4CoO3−δ (LSC) [219].
These materials have higher ionic conductivity compared to LSM,
while they also display mixed ionic and electronic conductivity and
high oxygen exchange coefficients. However, both LSCF and LSC suffer
from instability due to their chemical interaction with the YSZ elec-
trolyte forming La2Zr2O7 and SrZrO3. This interaction can be avoided
by introducing an interlayer of GDC between LSCF and YSZ, which
however causes increased ohmic losses [220]. Moreover, these ma-
terials, and in general Sr-doped perovskites suffer from poor stability
due to Sr segregation and SrO precipitation to the surface, which
inhibits the exchange of oxygen between the gas phase and the solid.

Zheng et al. [221] recently compared the performance of LSM,
LSCF and LSC oxygen electrodes during water electrolysis and found
that delamination occurred only on the LSM and LSC cells. On the
other hand, Wei et al. [222] operated an SOE with LSCF anode at
higher temperature (900 °C and at low current densities (0.2 A cm−2)
for 20 hours, nonetheless significant poisoning of the LSCF elec-
trode was observed sourcing from Cr contained in the interconnect
materials of their cell. After long operation of a SOE with LSCF anode
for 1000 hours at 800 °C under high current densities of 800 mA
cm−2, Grindler et al. [223] observed changes in the conductivity of
LSCF due to changes in the valence state of Co.

Othermaterials proposed as promising oxygen electrodes for SOEs
with performance superior to that of LSM are Ba0.9Co0.5Fe0.4Nb0.1O3−δ

[224], Ba0.5Sr0.5Co0.8Fe0.2O3−δ [225], SmBaCo2O5+δ [226], Sr2Fe1.5Mo0.5O6−δ-
Zr0.84Y0.16O2−δ [227], Sm0.5Sr0.5CoO3-Sm0.2Ce0.2O1.9 [228], Sm0.5Sr0.5CoO3-
Ce0.8Sm0.2O1.9 [229], La2−xSrxCo0.5Ni0.5O4−δ [230], La2NiO4+δ and
Nd2NiO4+d [231].

3.3.2. SOE with H+ conducting oxides
The oxygen electrodes both for oxygen and proton conducting

SOEs should present high porosity in order to allow the diffusion
of gases and to provide sufficient active sites for oxygen evolution.
In the case of proton conductors and in order to achieve high effi-
ciency for steam electrolysis, the intrinsic rate of H2O oxidation
(protons formation) should be higher than that of hydrogen pro-
duction by protons; otherwise, a decrease in proton concentration
within the electrolyte (due to high rates for protons recombina-
tion and hydrogen production) will lead to an increase in holes
concentration (in other words, protons will dissolve in the partial
protonic conductor and will be converted to H2 gas, leading to holes
generation) [232]. Therefore, the development of well-performing
air electrodes is of great importance in the field of proton-conducting
SOEs [25].

Iwahara and coworkers [233,234] were the first to demon-
strate solid oxide electrolysis with proton conduction, using Pt as
the oxygen electrode. Due to the high cost of platinum, following
studies introduced the use of less expensive perovskites, similar to
the anodes of oxygen ion conducting cells [25], e.g. samarium

strontium cobaltites (SSC) [235], lanthanum strontium cobaltites
[236] and lanthanum strontium manganites-chromites [237].

However, He et al. [238] noted that different processes/
mechanisms occur in the electrolysis using oxygen-ion conductors
and proton conductors and they stressed the importance of using
composites with both proton and electron conductivities, in order
to extend the active sites for reaction over the whole electrode area.
For this purpose, composites such as BaZr0.6Co0.4O3−δ [239] and the
composite materials of La0.6Sr0.4Co0.2Fe0.8O3−δ-BaZr0.5Pr0.3Y0.2O3−δ [240],
La0.6Sr0.4Co0.2Fe0.8O3−δ-Ba0.5Sr0.5Co0.8Fe0.2O3−δ [241] and Co3O4-loaded
La0.8Sr0.2MnO3-BaCe0.5Zr0.3Y0.16Zn0.04O3−δ [242] have been proposed.

To conclude, even though the oxygen evolution reaction during
solid oxide electrolysiswithoxygen-ion andproton conductors shows
distinct differences in reaction mechanisms, several common re-
quirements apply for the two cases. Both technologies rely on the
use of perovskite-based composite materials, which provide
both ionic and electronic conductivities and thus extend the
electrocatalytically active sites all over the electrode. The addition-
al requirements for mechanical stability (related with the high
operating temperature) introduce further limitations in the choice
of appropriate materials. Poor adhesion between anode and elec-
trolyte (and thus delamination effects) is commonly themain issue
of performance loss during oxygen evolution in SOE. The variety in
perovskite properties which can be achieved by A, B-site substitu-
tions is expected to lead tomaterialswith optimized stoichiometry;
however the effect of microstructure (grain size, porosity) should
be thoroughly examined for further optimization.

4. Cathodes for water electrolysis: electrocatalysts for the
hydrogen evolution reaction

The hydrogen evolution reaction (HER) on different metals is one
of themost investigated electrochemical reactions. Even thoughwell
performing electrodes are currently available, further reduction of
the overpotential for hydrogen evolution remains of great interest
for minimizing energy consumption during water electrolysis.

In general, the mechanism of HER in alkaline media follows three
steps [243,244]. The first step (Volmer reaction) includes the for-
mation of intermediate Hads atoms, which is the rate determining
step at low overpotentials. Hydrogen production then occurs fol-
lowing an electrochemical process (Heyrovsky reaction) and/or a
chemical process (Tafel reaction):

Volmer: H O e H OHads2 + → +− −

Heyrovsky: H H O e H OHads + + → +− −
2 2

Tafel: H Hads2 2→

Kinetic analysis of HER on Ni—Mo alloys has shown that at low
overpotentials the reaction mechanism is a combination of the
Volmer step and parallel Tafel and Heyrovsky steps, while at high
overpotentials the rate of the Tafel step is negligible and the reac-
tion proceeds through the Volmer–Heyrovsky steps [244].

Bockris was the first to investigate the kinetics of the HER re-
action on various metals [245] and the effect of impurities on
catalytic activity [246]; among others he observed a relation between
catalytic activity (exchange current) and the work function of the
metals [247]. In the period of 1950s–1970s it became apparent that
the exchange current density of HER and the strength of the metal–
hydrogen bond follow a so called “Volcano Curve” with the optimum
at the platinum group metals (Fig. 19) [248–252]. Metals on the left
adsorb H atoms too strongly, and on the right too weakly. Numer-
ous theoretical and experimental studies have been carried out in
the last 60 years focusing on the effect of electronic structure, surface
electrochemistry and molecular design on HER activity [253].
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Recently, Nørskov et al. [254,255] used DFT calculations for elec-
trochemical hydrogen evolution on a large number of transition
metals with different substrates and suggested the binding free
energy of H as the most appropriate descriptor for the HER activ-
ity. It is nowwell established that if the hydrogen is weakly bonded
to the surface, then the HER will be limited by the adsorption step,
while if hydrogen is strongly adsorbed a reaction–desorption step
will limit the rate of the HER reaction. A volcano-type relation-
ship thus describes the activity of several materials, where Pt appears
as the most active material (Fig. 19).

Even though noble metal–based materials (mainly Pt) are widely
chosen because of their high HER performance, their high price
makes them inappropriate for large-scale applications. During the
last years, various novel materials such as alloys with optimized hy-
drogen adsorption energy have been proposed as alternatives to Pt,
while numerous investigations have focused on improving the per-
formance by optimizing geometric factors [256]. Successful HER
electrocatalysts should have high electrocatalytic activity, stable per-
formance (no potential drift over time), chemical and electrochemical
stability (long lifetime) and low cost [257]. The next paragraphs give
an overview of the progress and the recent trends in materials used
as HER electrocatalysts.

4.1. Alkaline electrolysis

4.1.1. Ni, Co, Fe based electrocatalysts
As for OER, low cost electrocatalysts based on transition metal

oxides are the most typically employed materials for HER in
alkaline media [256]. Among them, nickel is the most common HER
electrocatalyst, owing to its low cost and high chemical stability in
the alkaline environment. Nevertheless, these electrodes face
problems of deactivation, since the HER activity of Ni cathodes
is significantly greater on fresh electrodes than after long-term
continuous operation.

Hall et al. [258], using a variety of electrochemical and
physicostructural characterization techniques, investigated system-
atically the electrode deactivation using smooth Ni (mechanically
polished electrodes with low surface area) in alkaline solutions. They
found that fresh electrodes are covered by a bilayer of α-Ni(OH)2

and a layer of NiOx formed by air. For potentials lower than the
reversible hydrogen electrode potential (during HER), the NiOx layer
mostly reduces to metallic Ni, while H-atoms incorporate into the
bulk of the electrode material. Thus, fresh electrodes show high HER
activity under cathodic polarization; however a gradual decrease
in HER activity is observed after several hours of electrolysis due
to nickel hydride formation. This decrease is even more pro-
nounced under large cathodic current densities and in presence of
highly concentrated alkaline solutions (typical conditions of indus-
trialized processes) due to the large extent of hydrogen incorporation,
which leads to the extensive formation of α-NiHx and β-NiHx.

The same study [258] investigated also transformations occur-
ring on the Ni electrode after repeated oxidation–reduction cycles.
Transient anodic currents are typical at the cathodes of industrial
electrolyzers and are generated during initiation and shut-down,
causing the formation of NiOx, α-Ni(OH)2, β-Ni(OH)2, and β-NiOOH.
These species are reduced back to metallic Ni on subsequent ca-
thodic polarization during HER. However, consecutive cycles can lead
to decrease in HER activity due to the development of strains and
the concomitant mechanical damages on the electrode.

The presence of oxide species on the surface is critical for HER
activity, since as reported by the group of Markovic [259–261], the
HER activity of Ni modified by Ni(OH)2 is four times higher than
for a bare Ni surface. It was proposed that Ni(OH)2 serves to enhance
the water dissociation step. The same group has highlighted the im-
portance of tailoring metal/metal oxide interfaces which can lead
to a bi-functional HER mechanism. It was suggested that the oxide
has an affinity to form OHads and thus promotes the dissociation of
water. The thus produced hydrogen atoms are then adsorbed at the
nearby metallic sites, while OH species adsorb on the metal oxide.
The most suitable metal–metal oxide combination for optimal HER
activity was found for Pt(111)–Ni(OH)2, due to (a) the sufficiently
high tendency of Ni(OH)2 to adsorb OH, which at the same time is
not high enough to cause poisoning of the sites and (b) the optimal
P—Hads energetics [259–261].

The early electrocatalytic studies identified Raney-nickel
(with Zn or Al as the leachable component) as a very active HER
electrocatalyst and already in the 1980s it was employed in the in-
dustrial large scale processes for hydrogen production by alkaline
electrolysis [262,263]. Commercial electrolyzers still utilize Raney-
nickel electrodes due to their low cost and sufficient activity, however
this material suffers from substantial deactivation with time after
intermittent operation for a long period, due to dissolution of the
catalyst components [264]. The activity of Raney-Ni has been at-
tributed to its hexagonal structure, which is unstable and forms the
normal cubic lattice of bulk nickel [262]. The HER activity of Raney-
Ni depends on the leaching conditions (concentration of the alkaline
solution, temperature, time etc) [256], which in turn affect the “con-
centration” of Raney-Ni within the coating, the coating thickness
and the amount of unleached material, i.e. Al or Zn [262].

Comparison of the HER performance of different Ni-based cath-
odes in 1 M NaOH was carried out by Tanaka et al. [265] and the
results showed that NiAl3 outperformed Ni2Al3, NiAl and Ni3Al, due
to its large surface area, the presence of micropores and the ap-
pearance of the nickel phase after leaching. The significance of the
small-sized pores (which counts for larger surface area) was also
highlighted by Wu et al. [266]. The same group investigated re-
cently the HER activity and corrosion resistance during long-term
water electrolysis in 6 M KOH solution, using NiAl3–Mo (10 wt%)
[267]. The improvedperformanceof theMo-containingelectrocatalyst
(Fig. 20) was related with electronic effects, since no significant
changes in the pore size distribution and BET surface area of NiAl3
were observed afterMo addition. The activity for HER increased over
time (Fig. 20). The authors attributed this activation to the removal
of any existing oxygen layer formed during sintering in the prep-
aration process [267].

Fig. 19. The data points in this volcano plot are themeasured exchange current density
plotted against the calculated free energy of H adsorption at U = 0 V. Single crystal
data are indicated by open symbols. The metals on the left side have high H cov-
erage, while the metals on the right side have low H coverage. Reprinted from
reference 255 with permission of the American Chemical Society.
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Several metals and metal oxides have been proposed for alloy-
ing nickel in order to prevent the formation of nickel hydrides and
thus improve stability, such as Fe [268], Cu [269], Ti [270], Ru [271],
Mo [272], Cr [273], Pd [273], W [274], Co [275], P [276], Sn [277],
IrO2 [278], RuO2 [278], MoO2 [279], CeO2 [280]. The majority of these
materials is prepared by electrodeposition, while materials such as
Mo or W which cannot be directly electrodeposited from aqueous
solutions of their salts can be co-deposited by using appropriate
complexing agents. Among the proposed nickel alloys, combina-
tions of Ni with Mo, Co and Fe have been identified as the most
promising. Although Cu is inactive by itself, Cu alloying with Ni has
also received much attention, as it apparently enhances the activ-
ity of the latter [269,281,282]. It has been reported that the specific
HER activity (normalized by the real Ni surface) can be up to 20%
higher than that of pure Ni by the addition of 49 wt% Cu [281].

According to Jaksic et al. [184,283] based on the Brewer–Engel
theory, alloying metals of the left half of the transition series in the
periodic table (empty or less filled d-bands or hypo-d electronic el-
ements) with metals of the right half of the series (more filled
d-bands or hyper-d electronic elements) results in a maximum bond
strength and a well pronounced synergism for HER [184,283]. In
this case, the intermetallic bonding of the alloys results to reduced
lattice parameters and interatomic distance, due to changes in the
electronic properties of the electron orbitals of neighboring atoms
which finally facilitate H desorption.

In agreement with this theory, combination of Ni with rare earth
metals such as Ce [284], Y, Pr or Sm [285] and Dy [286] has re-
sulted in active HER electrodes. Rosalbino et al. [287] synthesized
ternary Co—Ni—R (R = Y, Ce, Pr, Er) crystalline alloys and used them
as electrocatalytic materials for HER in 1MNaOH at 25 °C. All ternary
alloys had superior electrocatalytic activity compared to the binary
Ni—Co alloy; among them, Co57.5Ni36Y6.5 and Co57Ni35Ce8 exhibited
the highest activity for HER with exchange current densities of 0.07
and 0.09 mA/cm2 respectively, while the current exchange density
for Co57Ni47 was 0.05 mA/cm2 [287]. The authors attributed the su-
perior performance of these ternaries to the change of the electronic
properties related to appropriate combination of d8-orbitals of Ni
with d1-orbitals of Y or Ce and d7-orbitals of Co.

Arul-Raj et al. [288] compared the HER activity of various Ni alloys
(Ni—Mo, Ni—Zn, Ni—W, Ni—Fe, Ni—Cr,) during alkaline water

electrolysis and showed that Ni—Mo alloys yield the best currents
for hydrogen evolution. Specifically, an overpotential of 0.18 V was
reached after 1500 hours of water electrolysis in 6M KOH at
300 mA/cm2 at 80 °C; this was 0.3 V lower than that of a nickel
cathode. Apart from the high activity, Ni—Mo electrocatalysts
showed excellent resistance to corrosion and long-term stability.
Further investigations were carried out to elucidate the effect of re-
placing part of the high-cost Mo in the Ni—Mo alloy by another
element, aiming to decreased materials costs. The comparison of
the HER activity of several ternaries showed the following order:
Ni—Mo—Fe >Ni—Mo—Cu >Ni—Mo—Zn >Ni—Mo—Co >Ni—Mo—W
> Ni—Mo—Cr [289]. In essence, partially replacing Mo (in Ni—Mo)
by Fe does not lead to alterations in electrocatalytic performance,
since similar overpotentials have been obtained using the ternary
Ni—Mo—Fe (Ni70Mo15Fe15) and the binary Ni—Mo (Ni70Mo30) during
1500 hours of water electrolysis. However, the Ni—Mo—Fe combi-
nationwas considered from the authors asmore suitable for practical
applications due to significantly lower cost [289]. In agreement with
this study, several other groups also identified Ni—Mo-based alloys
as active electrocatalysts for alkaline HER based on non-platinum-
groupmetals [272,290,291]. However, it turned out that the inherent
oxophilicity of Mo makes this material quite pyrophoric, and thus
unsuitable for any commercial application [292].

A composite Ni/NiOx–Cr2O3–C electrocatalyst was proposed re-
cently by Bates et al. [292] as a highly active HER electrocatalyst,
which is also chemically stable when supported on polymeric solid
alkaline membranes. The experimental results showed that the ac-
tivity of this material is higher than the sum of individual HER
activities from the Ni and Cr—Ox components. This, according to
the authors, is the result of a synergetic effect, where at adjacent
Ni/NiOx sites the metallic Ni acts as a sink for the adsorption of in-
termediate hydrogen atoms and NiOx facilitates OH adsorption, while
Cr2O3 stabilizes the composite NiOx component under HER condi-
tions (where NiOx would typically reduce to Ni) [292].

As already noted, cobalt is also a promising material for alloy-
ing with nickel and in this direction, Hong et al. [293] investigated
the HER activities of several electrodeposited Ni—Co alloys and found
that they exhibit improved activity compared with pure Ni and Co
electrocatalysts. As shown in Fig. 21, Ni49Co51 alloy demonstrated
the highest intrinsic activity for HER in alkaline media among the
tested alloys. This enhancement in HER activity after alloying was
related by the authors with changes in the electronic structure of

Fig. 20. Polarization curves for porous Ni3Al–Mo and porous Ni3Al electrodes after
different times of continuous alkaline water electrolysis. Ni3Al–Mo has higher ac-
tivity than Ni3Al. Furthermore, HER activity of the Ni3Al electrode reduces as a function
of electrolysis time, while for Ni3Al–Mo a slight activation is observed after pro-
longed operation. Reprinted from reference 267 with permission of Elsevier.

Fig. 21. Specific HER activities normalized by the electrochemically active surface
area for Ni100, Co100 and several Ni–Co alloys. Data obtained under standard poten-
tial of −1.6 V vs SCE, 0.5 NaOH, 25 °C. Reprinted from reference 293 with permission
of Elsevier.
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Ni [293]. It was suggested that the electron-rich phase of Ni in the
Ni—Co alloys is more active toward HER due to its lower hydrogen
binding energy, in agreement with Nørskov’s calculations [254,255].

Lupi et al. [294] tried to activate Ni—Co alloys during HER
electrocatalysis by adding Mo ions into the alkaline NaOH solu-
tion. The in-situ activation led to improvement of the electrocatalytic
properties of Ni—Co alloys, since the exchange current density in-
creased two orders of magnitude. Moreover, the presence of Mo
resulted in enhanced electrochemical stability in all cases. The ob-
served enhancement in performancewas attributed to the formation
of Ni—Co—Mo ternary alloys on the electrode surface.

The HER activity of Fe is naturally higher than that of Ni, but Fe
is unstable in the alkaline environment and thus cannot be used
in commercial applications of alkaline electrolysis. However, com-
binations of Fe with Ni are promising and Ni—Fe alloys show better
HER activity than the individual parent materials. Meguro et al. [295]
prepared Fe, Ni and Ni—Fe catalysts with electrodeposition and used
them for HER in 8 M NaOH solution at 90 °C. They found similar
values for the Tafel slope (150 mV/dec) indicating that the mech-
anism of hydrogen evolution does not change upon alloying.
However, enhanced HER rates were obtained using Ni—Fe alloys.
Indicatively, a current density of 100 A/m2 was achieved under
overpotential of 0.22 V with Ni—Fe vs 0.26 V for Fe and 0.34 V for
Ni. The improved performance was related with the acceleration
of proton discharge (which is the rate determining step) due to
charge transfer from nickel to iron by alloying. The effect of adding
C in the Ni—Fe alloy was also investigated. Ni—Fe—C alloys were
prepared by electrodeposition using Ni and Fe precursors while lysine
was used as the carbon precursor. Carbon addition resulted in further
enhancement of the HER activity of the Ni—Fe alloys. A current
density of 100 A/m2 is achieved upon overpotential of 0.04 with
Ni—Fe—C vs 0.22 V with Ni—Fe, but after introduction of carbon a
5-fold decrease in the Tafel slope was observed, indicating altera-
tions in the HER mechanism. XPS analysis showed that carbon
addition enhances considerably the charge transfer from nickel to
iron. It was thus concluded that the carbon addition accelerates the
proton discharge on iron to such an extent that this step is not any
longer the rate determining step (rds), with the step of Hads des-
orption being the rds instead. Ni—Fe—C alloys were found to bemore
active than Fe—C, while Ni—C showed the poorest performance.
Ni—Fe—C alloys have been also used for seawater electrolysis and
it was found that their activity depends on the grain size [296] and
the composition of the alloy [297]. Flis-Kabulska et al. [298] also
reported enhancement in HER activity (up to 80%) after introduc-
ing carbon to Ni cathodes, while in this case the carburization took
place by plasma treatment in CH4/H2 gas mixture at 470 °C.

A novel investigation regarding solid alkaline water electroly-
sis was carried out recently by Chanda et al. [299]. The author of
this study synthesized NiFe2O4 electrocatalysts using the co-
precipitation method, and combined them with a modified (i.e.
poly(2,6-dimethyl-1,4-phenylene oxide (PPO))) binder. The cata-
lysts were then deposited on top of a nickel foam support and were
used for HER in alkaline water electrolysis with a polymeric anion-
selective membrane. The catalyst was found to be stable and active
under operation at 50 °C under 250mA/cm2 for 140 hours (Fig. 22).
In the course of water electrolysis, Fe ions in NiFe2O4 were reduced,
due either to cathodic potential or to the presence of hydrogen in
the cathode catalytic layer. For maintaining the electrostatic balance
in NiFe2O4, the oxide phase of Fe2O3 which is present after catalyst
synthesis is converted to iron hydroxides, thus proving the active
participation of iron in the HER mechanism [299].

As already mentioned, Ni Raney electrodes exhibit high
electrocatalytic activity, which however decreases over time during
long-term water electrolysis [256,300]. A novel type of Raney elec-
trode was developed by Döner et al. [301,302] by preparing Co—Zn
coatings on a graphite electrode, etching in a concentrated alkaline

solution and finally depositing a low amount of Pt (1 mg/cm2) onto
the etched Co—Zn. The resulting material is a promising HER
electrocatalyst, since it presented high HER activity (10 times higher
than the bare graphite) and durability and since stable perfor-
mance was obtained during 120 hours of continuous water
electrolysis under 100 mA cm−2 in 1 M KOH at 25 °C [302].

Another recent study proposed the application of Co—W crys-
talline alloys of Co95W5, Co90W10, Co85W15, Co80W20, Co70W30 (atomic
%) as possible HER electrocatalysts [303]. In 1 M NaOH solution at
25 °C, the Co—W alloys showed better performance compared to
polycrystalline Co, Ni and Ni—Mo electrocatalysts. In particular, the
overpotential at a current density of 250 mA/cm2 is 0.33–0.38 V for
the different Co—W alloys, while this for Co and Ni is 0.46 V and
0.45 mV respectively. The authors attributed the enhanced activi-
ty of the alloys to the modifications in the electron density of states
at the Fermi level of Co upon alloying with tungsten. Among the
investigated alloys, Co90W10 was found to yield the highest HER ac-
tivity, which according to the authors coincides with an increase
in the density of states at the Fermi level of the 3d Co band. This
influences the proton discharge, thus enabling the Co-sites to act
as a hydrogen source for the neighboring W sites, where hydro-
gen desorption occurs [303]. Ni—W coatings on Ni mesh also show
good electrocatalytic activity for HER, which, similarly to Co—W,
depends on the content of tungsten in the coatings. However,
according to Tasic et al. [304], the improved electrocatalytic char-
acteristics of Ni—W are mostly related to the high surface roughness
of the coatings.

Amorphous coatings prepared by co-deposition of Fe, Ni or Co
with Mo, W, P or Si have been investigated for alkaline HER. As re-
viewed by Safizadeh et al. [256], molybdenum and phosphorus are
the most promising elements for the development of amorphous
structures in alloys. Donten et al. [305] used Ni—Mo alloys and found
that the amorphous/nanocrystalline structure appears when the Mo
content is higher than circa 20 at %. Amorphous Fe alloys have also
been investigated as cathode materials for alkaline water electrol-
ysis [306]. It has been reported that the addition of metalloids (B
and/or Si) to the Fe-based electrode material can lead to the de-
velopment of low cost HER electrocatalysts, since reduction in
overpotentials was observed after an activation procedure with cyclic
voltammetry. Further addition of Co leads to highly active HER
electrocatalysts. The overpotential with Fe—C—Si—B material can
be reduced by 0.20 V compared to polycrystalline Ni, while the
energy consumption for 1 N m3-H2 can be reduced up to 0.48 kWh
[306].

As an alternative to metals and their oxides, silicides [307–309]
and nitrides [310] of transitionmetals have presented also good HER
activities both in acidic and in alkaline environments. It has been

Fig. 22. Long-termwater electrolysis. 10 wt% KOH, galvanostatic operation at 250mA
cm−2, anode: bare Ni foam, cathode: 10 mg cm−2 NiFe2O4 + polymer binder; elec-
trode area 4 cm2. Reprinted from reference 299 with permission of Elsevier.
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reported that both Co2Si and CoSi2 present high HER activity in 0.5–
2 M KOH, with current densities up to 10 times larger compared
to Co [309].

To conclude, Table 3 summarizes the development status of the
main material families for HER electrocatalysis in alkaline media.
Raney nickel is the typical HER material used in industrial elec-
trolysis due to its low cost and sufficiently high activity (still not
optimal), even though stability issues occur due to nickel hydra-
tion after prolonged cathodic polarization. In the course of developing
alternative HER catalysts, both active and stable, several materials
have been proposed but not yet implemented in real systems. Several
metals and/or metal oxides have been alloyed with Ni leading to
well-performing catalysts as a result of electronic interactions, among
them the combination of Ni—Mo—Fe seems to be promising for prac-
tical utilization. NiFe2O4 is also a material with great promise, while
other materials such as silicides and nitrides have been also pro-
posed, but further detailed research is needed in this direction.

4.1.2. Novel structures
The implementation of nanostructures in electrocatalytic ma-

terials has gained attention recently in order to further improve
efficiency and/or reduce the loading, especially for precious
metals. Some recent examples of nanostructuring alkaline HER
electrocatalysts are presented in this section.

The deposition of Pd and Ru nanoparticles on the surface of Ni
foam has been shown to enhance catalytic activity of the baseline
material toward HER in alkaline solution [311]. At the overpotential
of −0.30 V, the current densities were 21, 71 and 92mA/cm2 for un-
modified, Pd-modified and Ru-modified Ni foam respectively (these
values are normalized per surface area). The observed improve-
ment is not only mainly related with the superior HER activity of
both Pd and Ru, but also the increase of the electrochemically active
surface for the modified materials (22-fold increase upon Pd ad-
dition, 11-fold increase upon Ru addition) is a key parameter. These
findings show that modified Ni foam materials are potential cath-
odes for commercial alkaline electrolyzers, since enhancement in
HER performancewas observedwith the deposition of trace amounts
of the noble metals (ca. 0.1 wt% Pd or Ru), thus with minimal cost
increase in the materials. Another nanostructured material prom-
ising for HER electrocatalysis under alkaline conditions was proposed
by Shibli et al. [312]. In this work NiO nanoparticles (of 3 nm) were
incorporated into a Ni—P matrix resulting in a four-fold reduction
of overpotentials.

Carbon nanotubes, one of the major breakthroughs in
nanomaterial synthesis, was coupled by McArthur et al. [313]
with nanoparticles synthesis and led to the development of
3D Ni nanoparticle-decorated on multiwall carbon nanotubes
electrocatalysts on which alkaline (1 M KOH) HER can occur. The
thusdevelopedmaterial showedsignificant increase inelectrocatalytic
activity relative to a bulk Ni plate. Indicatively at overpotential of
0.10 V, the obtained current density is twoorders ofmagnitude larger
on the decorated catalyst compared to the bulk Ni.

Finally, the hydrothermal method has been proposed as a prom-
ising route for the generation of novel nanostructured alkaline HER
electrocatalysts, based on the development of RuO2–NiO nanorod
arrays on a Ni foam substrate [314]. These integrated materials
showed enhanced surface area, small charge transfer resistance, ex-
cellent HER performance and long-term stability (after 60 hours of
continuous operation). The exchange current density for the RuO2–
NiO/Ni foam was reported to be two orders of magnitude higher
than that of Ni foam or NiO/Ni foam catalysts. Moreover, a low value
for the Tafel slope was observed (38 mV/dec) suggesting the ap-
propriateness of this material for practical applications. This
pronounced HER activity was attributed to the unique nanostructure
of the material. According to the authors, the presence of nickel
oxide/hydroxide on the catalyst surface promotes the dissociation
of water and the formation of hydrogen intermediates, which can
consecutively adsorb onto the neighboring Ru sites and recom-
bine into molecular H2 very rapidly [314]. The in situ growth
technology followed in this study also led to significantly en-
hanced mechanical adhesion between the nanorod arrays and the
Ni foam substrate. Moreover, the nanorods have the ability to supply
smooth hydrogen evolution channels, thus allowing fast removal
of the H2 bubbles from the electrode surface. Not only these mor-
phological characteristics play a key role for ensuring high catalytic
activity, but also they are mainly responsible for the long-term sta-
bility of this material compared to conventional coated catalysts
(Fig. 23).

4.2. PEM electrolyzers

4.2.1. Pt based electrocatalysts
Since the main challenges in PEM electrolysis are related to

the OER (HER is much faster than its counter-reaction OER), re-
search efforts are mainly focused on the development of anode
electrocatalysts and less studies refer to cathode materials. In fact,

Table 3
Development status of main material families for HER electrocatalysis in alkaline media.

Material Activity Stability Status

Raney Ni Sufficient activity Deactivation after intermittent operation Commercially used
Ni–Co, Ni–Fe High activity, which can be further improved

upon alloying with rare earths
Better stability than Raney Ni, but still
not optimal

Laboratory applications

NiFe2O4 Very high activity Long term stability Applied in lab-scale electrolysis with polymeric membrane
Ni–Mo Very high activity Long term stability Pyrophoric material: inappropriate for commercialization
(Ni,Co)–W High activity Unknown Laboratory applications
Co2Si Very high activity Unknown Laboratory applications
Ni3N High activity Unknown Laboratory applications

Fig. 23. Schematic representation of the morphology of RuO2–NiO/Ni foam (a) where
the accumulation of H2 bubbles on the surface is prevented and (b) of the conven-
tional coated catalyst where these phenomena typically occur. Reprinted from
reference 314 with permission of Elsevier.
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the exchange current density for H+/H2 on the most effective HER
electrocatalyst is almost 1000 times larger than the exchange current
density for H2O/O2 on the most effective OER electrocatalysts [315].

The majority of the works on HER for PEM electrolyzers uti-
lizes Pt-based materials [19,20,316–318], and carbon supported
highly dispersed Pt nanoparticles are presently the benchmark
electrocatalysts for PEM electrolysis [20]. According to Fig. 17, Pt not
only yields the best HER activity, but also shows excellent stabili-
ty in the acidic PEM environment. As discussed in the next
paragraphs, several inorganic materials have recently drawn atten-
tion as alternative HER electrocatalysts, but their performance is still
much lower compared to that of Pt-based electrocatalysts. Thus, re-
search efforts are directed in the frame of nanotechnology aiming
to the minimization of Pt loading, while maintaining high HER
activity.

The catalytically active phase is typically developed in the form
of dispersed nanoparticles (below 10 nm) in order to increase the
surface to volume ratio and thereby reduce the loading of the high-
cost Pt. The catalyst is then introduced in gas diffusion electrodes
based on low-cost electronic carriers with large surface area, such
as carbon black or carbon nanotubes. The nature of the electronic
carrier plays an important role on the HER activity, as shown by
Grigoriev et al. [316]. In their study, the same catalytic phase com-
posed of Pt nanoparticles was dispersed on carbon black and on
graphitic nanofibers and the resulted materials were used as HER
electrocatalysts in a PEM electrolysis cell. During water electroly-
sis at 1 A cm−2 and at 90 °C, a voltage of 1.67 V was observed with
the graphitic nanofiber, instead of 1.72 V for the case of carbon black.
The enhanced performance of graphitic nanofibers can be attrib-
uted to both their lower resistivity, which facilitates electron transfer
during HER, and also to their microporous structure, which favors
the transport of reactant gases due to better diffusion of hydrogen
[319].

4.2.2. Sulphides, phosphides, carbides and nitrides
In the quest to find highly active HER electrocatalysts com-

posed of earth-abundant materials, several sulphides, carbides and
nitrides have been proposed lately as promising alternatives to the
Pt cathodes. Among the thus developed materials, molybdenum
sulphides (mainly MoS2) represent a promising class of materials
for HER electrocatalysis, due to their relatively high activity (but still
lower than Pt), excellent stability and low cost (Mo is about 104 times
more abundant than Pt) [320–323]. The high HER activity of single
trilayer MoS2 was predicted by Hinnemann et al. in 2005 [324] using
DFT calculations to analyze the similarities between metallic MoS2
and effective biological HER catalysts, such as hydrogenases and ni-
trogenases which possess active centers consisting of Fe, Ni andMo.
The HER activity of MoS2 supported on graphite was experimen-
tally verified by employing this catalyst on a Nafion electrolyte;
reasonable activity was obtained with an overpotential of 0.1–
0.2 V [324].

Furthermore, recent investigations by the group of Nørskov [325]
emphasized the key role of the support on the electrocatalytic ac-
tivity of MoS2, which can result in several orders of magnitude
difference in HER activity. The calculations revealed that an ideal
support should exhibit optimal adhesion energy for the Mo-edge
of MoS2 equal to −0.30 eV. Doped graphene and graphene sup-
ported on metals are proposed as supports with great potential to
achieve high HER activities [325].

In the last ten years, MoSx-based HER electrocatalysts have been
extensively investigated and rapid progress took place in this field
[321,322]. As reviewed recently by Yan et al. [321], numerous mor-
phologies of MoSx (such as nanoparticles, nanosheets, films,
composites) have resulted in high HER efficiencies. The use of MoSx
nanoparticles has the clear advantage of the large amount of active
sites, but on the other hand thesematerials have shown poor stability

[321]. According to Xie et al. [326], the rich existence of defects in
MoS2 results in partial cracking of the catalytically inert basal planes,
which leads to exposure of additional active edge sites and thus to
higher activity. Working in this direction, the authors of this study
developed a strategy for controlling the defects in MoS2 ultrathin
nanosheets and obtainedmaterials with excellent HER activity (small
onset potential of 0.12 V, small Tafel slope of 50 mV/dec, durabil-
ity for >160 min). MoSx films consisting of nanoparticles [327] or
nanosheets [328] have been also reported in literature, as well as
amorphous MoSx films, the activity of which has been related with
the presence of more unsaturated active sites than in MoS2 single
crystals or nanoparticles [321]. Doping with transition metal ions
has been shown to further enhance (up to 1.8 times larger current
densities were observed in acidic environment) the HER activity of
amorphous MoSx films [329]. However, as shown in Fig. 24, en-
hancement is observed only with selected promoter ions (Fe, Co,
Ni, Zn) while doping with ions of Mn and Cu did not have any effect
on HER activity.

Even though there are still remaining challenges associated with
the use of MoSx in PEM electrolysis which make them unsuitable
for large-scale application, this family of materials could possibly
have a place in future PEM electrolysis. A main issue related with
the use of MoSx nanoparticles, nanosheets and films for HER is the
low conductivity of these materials. The use of conductive tem-
plates or supports (such as carbon nanotubes or graphene) is a
method proposed to optimize conductivity [321]. Hou et al. [330]
proposed the use of MoO2 nanobelts coated with nitrogen self-
doped MoS2 nanosheets as an active HER electrocatalyst, where the
nitrogen doping leads to enhanced conductivity as well as to a high
density of spinning electro states around the N and Mo atoms in
MoS2 nanosheets. The obtained core-shell type catalyst had higher
HER activity (with a Tafel slope of 47 mV/dec) and durability com-
pared to commercial Pt/catalysts [330]. Great progress was presented
in a latter study of the same group, since a novel catalyst was de-
veloped [331] by growing MoS2 nanosheets on carbon fibers and
then decorating MoS2 with Pt nanoparticles. The resulted compos-
ite exhibited excellent characteristics for HER electrocatalysis, with

Fig. 24. Absolute values of current densities obtained with unpromoted and
M-promoted (M =Mn, Fe, Co, Ni, Cu or Zn) MoS3 films on glassy carbon in pH = 0
at 0.20 V overpotential. Adapted from reference 329.
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an overpotential of −5 mV, Tafel slope of 54 mV/dec (Fig. 25) and
excellent stability during 10 hours of continuous operation. The op-
timized performance of the composite was attributed to several
factors: (i) the effective charge transfer due to the enhancement in
conductivity provided by the carbon support, (ii) the high electro-
chemical effective surface area provided mainly by the structure of
the carbon fibers (permeable channels for ion adsorption and trans-
port), (iii) the synergetic effect between MoS2 nanosheets and Pt
nanoparticles, as confirmed by XPS [331].

Transition-metal phosphides form a class of materials that has
been widely used as anodes in Li-ion batteries and as catalysts for
the hydrodesulfurization reaction (HDS) [332]. Owing to the mech-
anistic similarities of HER and HDS related with the dependence
of catalytic activity on the binding of hydrogen to the catalyst, the
activity of these materials for HER has been lately investigated and
validated. Kucernak et al. [333] investigated the role of phospho-
rus content in nickel phosphides on the corrosion resistance in acid
and on the HER activity. The authors of this study [333] used the
hydrothermal route for developing several nickel phosphides and
concluded that the materials with higher phosphorus content are
more stable in the acidic environment of 0.5 M H2SO4. Regarding
HER activity, Ni2P catalysts were found to be more active than Ni12P5
at 25 °C (current densities of 1.27 A/cm2 and 0.02 A/cm2 respec-
tively at −0.2 V). Pan et al. [334] synthesized monodispersed nickel
phosphide nanocrystals with several different compositions fol-
lowing the thermal decomposition approach, where the phase-
controlled synthesis was achieved by changing the molar ratio of
P:Ni precursor. The nanocrystals of Ni5P4 exhibited higher HER ac-
tivity than Ni12P5 and Ni2P nanocrystals (Fig. 26), which according
to the authors can be attributed to the higher positive charge of Ni
and the stronger ensemble effect of P in Ni5P4 nanocrystals. The same
group also published recently [335] an innovative article where
carbon nanospheres were decorated by nanostructured Ni2P. The
hybrids were used as HER electrocatalysts in 0.5 M H2SO4. A carbon
content of 40% was found to be the optimal, but still HER activity
is lower compared to Pt. For achieving a current density of
10mA/cm2, the overpotential needed is 0.12 V for Ni2P–10% C, 0.11 V
for Ni2P–20% C, 0.92 V for Ni2P–40% C and 0.99 V for Ni2P–60% C.

Several other phosphides, carbides and nitrides in combina-
tion with various novel nanostructures have been proposed lately
as promising low-cost HER electrocatalysts with tolerance in acidic
media. Table 4 gives a comparison for the HER activity of various

recently developed materials [326–350]. Indicatively, excellent per-
formance and stability has been observed using FeP nanoparticles
on candle soot [339], WP2 nanorods [344], molybdenum phosphor-
sulphide [343], CoP nanocrystals on carbon nanotubes [340], porous
C3N4 nanolayers with nitrogen-doped graphene sheets [345], a novel
bimetallic carbide nanowire structure where nanosized Mo2C par-
ticles were integrated onto a highly conductiveWC backbone [346],
WC nanopowder for high temperature PEM electrolysis [350],
nanostructured mixed close-packed Co0.6Mo1.4N2 [347], Mo2C and
Mo2N nanoparticles [348].

4.2.3. Other materials
While most of the materials developments are focused on

sulphides, phosphides, carbides and nitrides, other individual ma-
terials have been also investigated as possible anodes for PEM
electrolysis. Grigoriev et al. [351] proposed that Pd could be ad-
vantageously used as an alternative to Pt for HER in PEM water
electrolyzers, however alloying is required since pure Pd forms hy-
drides which lead to instability and degradation issues. The alloying
of Pd with the low cost element Bi at ca. 70 at % was shown to sup-
press Pd hydride formation and thus improve long term stability
during HER, while the HER activity is similar to that of pure Pd [352].

Perovskitic materials have been also used as HER electrocatalysts
in 0.1 M H2SO4. The effect of using different B-site metals on
lanthanum based perovskites (LaMO3) was investigated by Galal
et al. [349]. The catalytic activity was found to follow the order
LaFeO3 > LaCoO3 > LaNiO3 > LaMnO3. The superior performance of
LaFeO3 could be related with the fact that Fe itself has higher HER
activity compared to Co, Ni and Mn [353].

Co nanoparticles encapsulated in nitrogen-doped carbon were
used recently as potential HER catalysts in a wide range of pH. It
was found that the interactions between Co nanoparticles and surface
carbon nanoshells resulted in high HER activities. To achieve current
density of 10mA/cm2 the overpotential needed is 0.2 V, much lower
compared to the 0.4 V needed for Fe nanoparticles encapsulated in
nitrogen-doped carbon and to the 0.6 V for the multiwalled carbon
nanotubes [354]. Another recently published interesting and prom-
ising work utilizes HER electrocatalysts based on MoO2-graphene
composites [355]. High HER activity (50 mV/dec Tafel slope) was
observed together with a low onset overpotential of 0.2 V. The op-
timized structure of this material, responsible for the high HER
activity, is based on the synergistic effects of MoO2 nanoparticles

Fig. 25. Tafel plots for different HER electrocatalysts: MoS2 nanosheets grown on
carbon fibers (black), Pt nanoparticles on carbon fibers (red) and Pt nanoparticles
on MoS2 nanosheets grown on carbon fibers (blue). Reprinted from reference 331
with permission of Elsevier.

Fig. 26. Tafel plots for different HER electrocatalysts: Ni12P5 (blue), Ni2P (green), Ni5P4
(gray), 0.5 M H2SO4, 25 °C. Adapted from reference 334.
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with graphene, the high conductivity (mainly due to graphene) and
the high number of active sites due to the structural characteristics.

Inspired by the broad use of Ni in alkaline electrolysis, Wang
et al. [356] attempted the use of Ni based alloys in acidic HER
electrocatalysis. Alloying was essential in order to ensure stability
in the acidic environment and NiMoZn alloys were synthesized and
evaluated as HER electrocatalysts. Their work identified the essen-
tial role of Zn in boosting the intrinsic electrocatalytic activity. Zn
concentration of 1–3 at % results in high HER activities, 10 and 1.5
times higher compared to Ni and NiMo alloy nanoparticles respec-
tively. The optimal alloy with 2at% Zn has also presented excellent
stability in the acidic electrolyte of 0.5 M H2SO4 during an acceler-
ated stability test (1000 sweeps between 0 and −0.4 V vs Ag/AgCl,
0.1 V/s) where the material has experienced conditions between
extreme (30mA/cm2) and normal (10mA/cm2) working conditions.

In conclusion, several materials have been developed and in-
vestigated as HER electrocatalysts in acidic media as alternatives
to the high-cost Pt. The majority of these materials belong to the
main families of sulphides, phosphides, carbides and nitrides, but
also other individual materials (metallic alloys, perovskites) have
been proposed. Among these materials, MoSx seems to be the most
promising candidate in terms of activity and stability in the acidic
environment. Recent studies have shown that the main obstacle for
commercialization of MoSx, which is the poor electronic conduc-
tivity, could be overcome utilizing advances in nanotechnology, such
as the core-shell structures.

4.3. Solid oxide electrolyzers (SOEs)

4.3.1. SOE with O2− conducting oxides
As already discussed for the case of OER, the materials used in

SOEs are typically based on the already mature technology of solid
oxide fuel cells, even though the working conditions, especially at
the hydrogen electrode side, are quite different between the two
technologies. Thus, the ceramo-metallic cermet Ni–YSZ (YSZ: ZrO2

stabilized with 8 mol% Y2O3) is typically used as the hydrogen elec-
trode in large scale SOEs [357–360]. The nickel component in the
two-phase cermet is employed due to its high activity, electronic
conductivity and low cost. The presence of the ceramic phase (YSZ)
in the cermet provides prevention of Ni from sintering, good ad-
hesion between the electrode and the electrolyte, thermal expansion
coefficient which is acceptably close to that of the other cell

components, while YSZ also provides pathways for oxygen ion trans-
port deep into the porous electrocatalytic layer thus leading to large
length of the three-phase-boundaries.

However, degradation in the performance of Ni–YSZ during pro-
longed steam electrolysis has been reported and was ascribed to
cracks in Ni–YSZ [361], aggregation of Ni due to the high temper-
ature and the high humidity [362], relocation of Ni [363], varying
surface roughness of the Ni particles [364], poisoning from impu-
rities in the material [365], crystallographic transformation of YSZ
[366]. Moreover, metallic nickel can be oxidized to NiO during the
steam electrolysis, resulting in loss of electronic conductivity in
the cermet and consequently to degradation of the performance of
the electrode and even delamination from the electrolyte surface.
In order to prevent such Ni oxidation, significant concentration of
hydrogen gas (as a reducing agent) is typically added to the gas
stream [367].

Thus, efforts have been focused on the development of novel ma-
terials with high activity and stability in order to replace Ni–YSZ
cathodes in SOEs. The combination of highly dispersed Ni with
samaria-doped ceria was first proposed [368], but nowadays all the
research efforts are directed on the development of novel perovskitic
materials.

Substituted lanthanum chromates are commonly investigated as
cathodes for steam SOEs. Yang and Irvine [369] in 2008 were the
first to introduce (La0.75Sr0.25)0.95Mn0.5Cr0.5O3 as the cathode of a steam
electrolysis cell operated in the temperature range of 750–1000 °C
without the need of having a flow of a reducing agent gas over the
electrode. Aiming at higher electrocatalytic activity, loading of active
Fe [370] or Ni [371] into the composite La0.75Sr0.25Cr0.5Mn0.5O3−δ–
Ce0.8Sm0.2O2−δ cathode has been proposed. The Ni-loading of the
perovskite-based composite resulted in a 20% increase in Faradaic
efficiency for 3%H2O/5%H2/Ar and to 11% increase for 3% H2O/Ar, due
to the synergetic effect of the catalytically active Ni phase and the
redox-stable perovskite. Promising performance was observed for
the Fe-loaded composite when either 3% H2O/5% H2/Ar or 3% H2O/
Ar was supplied for the electrolysis at 800 °C. Moreover, the Fe-
loaded composite showed stable performance during the first hour
of continuous operation under 1.5 V at 800 °C; a decrease of ca 15%
in performance was however observed after 15 hours of continu-
ous electrolysis.

A novel perovskite chromate cathode with anchored nickel
nanoparticles was proposed recently as a potential fuel

Table 4
Comparison of performance of various HER electrocatalysts in 0.5 M H2SO4.

Catalyst Tafel slope (mV/dec) Exchange current
density (mA/cm2)

Current density
i (mA/cm2)

Overpotential at current
density i (mV)

Reference

Amorphous MoS3 film 40 0.0013 2 170 [329]
MoS2 nanoparticles on graphene 41 – 10 150 [337]
Defect-rich MoS2 nanosheets 50 0.009 10 180 [326]
Pt–MoS2 nanosheets on carbon fibers 53.6 – 10 35 [331]
CoS2 nanowire 51.6 0.015 10 145 [338]
FeP on candle soot 58 0.22 10 112 [339]
FeP nanowires* 38 0.42 10 55 [336]
CoP on carbon nanotubes 57 0.13 10 115 [340]
CoP nanowires 51 0.288 10 67 [341]
CoP nanoparticles 50 0.13 20 85 [342]
Ni5P4 nanocrystals 42 0.057 10 105 [334]
NiP2 on carbon nanospheres 46 0.49 – – [335]
Mo/P/S 50 0.2 – – [343]
WP2 nanorods 52 0.013 10 148 [344]
C3N4 layers on nitrogen-doped graphene 49 0.43 10 80 [345]
Mo2C–WC nanowire 56 0.0047 80 184 [346]
Co0.6Mo1.4N2 – 0.000015 10 200 [347]
Mo2N 100 – 10 381 [348]
Mo2C 56 – 10 198 [348]
Mo2C on carbon nanotubes 55 0.014 1 63 [349]

* In 0.1M HClO4.
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electrode for the steam electrolysis in oxygen-ion solid oxide
electrolyzers [372]. In this work catalytic Ni nanoparticles
were introduced in a perovskite which was A-site deficient, i.e.
(La0.75Sr0.25)0.95(Cr0.8Ni0.2)0.95Ni0.05O3−δ. As shown in Fig. 27, when Ni
is loaded in the composite, higher current densities are observed
during steam electrolysis at 800 °C either in presence or in absence
of hydrogen in the stream. The Ni-loaded composite exhibited
sufficiently stable performance during continuous electrolysis of
3% H2O/Ar at 1.5 V, with a slight decrease (below 10%) in current
density (not shown here).

Even though these studies [370–372] showed that loading of sub-
stituted lanthanumchromiteswith an activemetallic phase can lead
to enhanced performance of steam electrolysis, slight degradation
over timewasobserved inall casesunderprolongedoperation,mainly
due to chemical and structural changes of the perovskitic phase.

Qin et al. [373] synthesized a Fe-doped titanate of
(La0.2Sr0.8)0.9Ti0.9Fe0.1O3−δ with A-site deficiency and B-site excess and
their experimental results showed that this material can be a po-
tential cathode for oxygen-ion conducting SOEs. Doping with Fe led
to improvement in electrocatalytic activity of the titanate, similar-
ly with the cases of doping of chromates [370–372]. Specifically, the
current efficiency of the Fe-loaded perovskite was enhanced by 20%
compared to the bare perovskite in a wide range of applied poten-
tials, both in presence and in absence of H2 in the water steam.
Interestingly, the Fe-doped titanate showed excellent stability when
direct steam electrolysis was performed at 1.4 V in 3% H2O/Ar at
800 °C for 24 hours, thus suggesting that the anchored interface
between the Fe nanocatalyst and the perovskitic substrate is ben-
eficial to the thermal stability and the high-temperature catalytic
activity.

The same group used the concept of metal doping also on lan-
thanum vanadates [374] and loaded La0.7Sr0.3VO3 with Fe and Ni,
which resulted in improved electrolysis (up to 20% increase in current
efficiency) compared to the undoped perovskite. However, the sta-
bility of this material during long-term operation was not discussed
in their work.

To conclude, the typical Ni–YSZ composite used in SOEs suffers
from poor stability under the operating conditions of electrolysis
which results to several structural damages. In the course of de-
veloping alternative SOE cathodes, perovskites have gained much
attention. Appropriate materials should offer good chemical stability
in presence of steam and hydrogen, compatibility with the other

cell components, good thermal expansion characteristics and elec-
tronic (or mixed ionic–electronic) conductivity. Substituted
lanthanum chromates, titanates and vanadates have been pro-
posed and it has been found that the addition of an active metallic
phase (e.g. Ni, Fe) can lead to enhanced performance; however sta-
bility is still a main challenge related to SOEs.

4.3.2. SOE with H+ conducting oxides
A basic difference between proton and oxygen ion conducting

SOEs is the fact that the electrode at the HER side is exposed only
to hydrogen gas (evolving during electrolysis) in the first case, while
reactant steam water is also present in the second case. This op-
erational difference allows the use of nickel-based materials as
hydrogen electrodes in proton conducting SOEs, since they do not
suffer from reoxidation (and subsequent degradation due to the loss
of electronic conductivity) as in the case of oxygen-conducting SOEs
[235]. Moreover, apart from its low cost and high electrical con-
ductivity, nickel has exhibited good chemical compatibility with the
majority of the existing proton-conducting oxides at high tempera-
tures in solid oxide fuel cell applications, with electrolytes such as
Ba3Ca1.18Nb1.82O9−δ [375], BaZr0.8Y0.2O3−δ [376–378], BaZr0.1Ce0.7Y0.2O3−δ

[379], BaZr0.3Ce0.5Y0.2O3−δ [380], BaCe0.85Y0.15O3−δ [381],
Y0.8Ca0.2BaCo0.4O7+δ [382].

Hydrogen electrodes are typically composed of nickel-ceramic
cermets (and not pure Ni), in order to ensure high length of
three-phase-boundaries (TPBs) and thus to provide an extended
reaction zone, but also in order to enhance adhesion to the elec-
trolyte [24,383]. Successful steam electrolysis at 700 °C has been
achieved using nickel-based ceramo-metallic cermets, such as Ni–
BaCe0.5Zr0.3Y0.16Zn0.04O3−δ [237,243] and Ni–BaCe0.5Zr0.3Y0.2O3−δ [238].

These materials have exhibited sufficient intrinsic activity and
stability, thus optimization of the hydrogen electrodes for proton-
conducting SOEs should focus mainly on the microstructure of the
nickel-based composites rather than on the development of new
alternative materials. High porosity of the electrode structure is ad-
vantageous for facilitating the gas diffusion, but on the other hand
the macro-pores can increase the contact resistance between the
electrolyte and the hydrogen electrode and also decrease the TPB
length. In order to ensure high porosity while simultaneously keeping
a high TPB area and good electrolyte/electrode contact, a thin and
relatively dense functional layer is typically added between the elec-
trolyte and the porous external electrode film [24,383].

Fig. 27. Effect of loading Ni in (La0.75Sr0.25)0.95(Cr0.8Ni0.2)0.95Ni0.05O3−d cathode on the performance during electrolysis in 3%H2O/5%H2/Ar (a) and 3%H2O/Ar (b). T: 800 °C, elec-
trolyte: YSZ, anode: LSM/YSZ. Reprinted from reference 372 with permission of Elsevier.
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5. High temperature CO2/H2O co-electrolysis

5.1. Operation and mechanisms

SOEs have the advantageous capability of producing syngas di-
rectly via the co-electrolysis of CO2 and H2O. SOE co-electrolysis units
are expected to play a crucial role in the future for the production
of synthetic fuels from water and CO2 with the use of intermittent
renewable energy sources. The syngas produced during co-
electrolysis can be subsequently transformed into synthetic fuels
[384–390].

This can thus lead to significant reduction in the cost of a total
system for CO2-recycled fuel production process, since the need for
a reverse water–gas-shift reactor is eliminated [390,391]. Pozzo et al.
[392] proposed a novel process plant design by integrating a di-
methyl ether (DME) synthesis unit with a woody biomass gasifier
and a high-temperature co-electrolysis unit. According to their cal-
culations, the utilization of the co-electrolysis unit can lead to a two-
fold enhancement in biomass-to-liquid plant efficiency compared
to conventional plants [392].

According to thermodynamics (Fig. 28), the co-electrolysis of CO2

and H2O should be carried out at temperatures between 700 and
900 °C, where the energy demands for the two electrolytic pro-
cesses are similar. Numerous studies have demonstrated the
feasibility of co-electrolysis both in laboratory scale using single cells
[32–35,393–405] and in large-scale using stacks of cells [406–411].

In the cathode of such cells, two electrochemical reactions occur
simultaneously at the triple phase boundary, i.e. H2O and CO2 elec-
trochemical reductions. The oxygen ions produced by these
electrochemical reactions are transferred through an oxygen ion-
conducting membrane (typically YSZ) to the anode, where oxygen
gas is formed. Thus, the electrochemical reactions that take place
in solid oxide co-electrolysis are:

Cathode H2O + 2e− → H2 + O2−

CO2 + 2e− → CO + O2−

Anode O2− → 1/2 O2 + 2e−

Moreover, the reversible water gas shift (RWGS) catalytic reac-
tion also takes place at the cathode:

Cathode: H CO H O CO2 2 2+ → +

It thus appears that at the cathode of the electrolyzer, CO can
be produced either electrochemically by the dissociation of CO2,
or catalytically via the RWGS reaction. Controversial observations

have been presented in the literature regarding the actual
contribution of electrochemistry and catalysis in the total CO pro-
duction. Most of the studies report that CO2/H2O co-electrolysis
performs slightly worse (10%) than H2O electrolysis (CO is mainly
produced electrochemically and RWGS has a small contribution)
[393,394,398,400,401,406], while a few studies report that CO2/H2O
electrolysis has the same performance as H2O electrolysis (CO is
totally produced catalytically via the RWGS) [405,410].

These discrepancies regarding the CO production route can be
related to the actual differences in the studied systems, since ac-
cording to recent findings [32,394,412], the contribution of the
electrochemical and catalytic routes on the total CO production can
be significantly affected both by the structural characteristics of the
electrode–catalyst (porosity, particle size, ionic conductivity, thick-
ness), but also by the operating conditions (gas composition,
temperature, operation at limiting currents).

Li et al. [412] developed a theoretical model considering the cata-
lytic and electrochemical reactions and mass and charge transport
properties in order to predict the competitive behavior of cata-
lytic and electrochemical routes for CO production during CO2/
H2O co-electrolysis. According to this study, the heterogeneous
catalytic reactions take place near the outer surface of the cathode
and they are 20–100 times faster than the electrochemical reac-
tions, which take place at the three-phase-boundaries (close to the
electrolyte). The model predicts that heterogeneous catalysis is
limited bymass transfer, while electrochemistry is limited by charge
transfer. Thus, modifications in the porosity and particle size of the
cathode could enhance mass transport and thus promote the CO2

reaction through the catalytic route, resulting in experimentally ob-
tained polarization curves of CO2/H2O co-electrolysis close to that
of H2O electrolysis. Similarly, increase in the ionic conductivity of
the cathode is related to improved charge transfer, and thus pro-
motes the electrochemical route of CO2 reduction, leading to
polarization curves of CO2/H2O co-electrolysis similar to those of CO2

electrolysis. Operating conditions influence both mass and charge
transfer, however not at the same extent (e.g. electrochemical re-
actions are more sensitive to temperature changes).

5.2. Materials for co-electrolysis

The majority of the studies on high temperature CO2/H2O co-
electrolysis utilize Ni–YSZ composite cathodes, similarly to the case
of steam electrolysis [32,34,393–401,413].

Fig. 28. Thermodynamics of CO2 and H2O splitting reactions. The electrochemical cell potential that corresponds to the energy input is given in the right axis. The dashed
line indicates the temperature where H2O/CO2 co-electrolysis can occur. Reprinted from reference 390 with permission of Elsevier.
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It is well established that co-electrolyzers encounter stability
issues, while the degradation depends strongly on the current
density. Several studies have shown that the degradation is much
faster when the cell is operated at higher current densities
[397–399,401]. Indicatively, Sun et al. [397,398] investigated the du-
rability of CO2/H2O co-electrolysis at 800 °C with 60% reactant
utilization and observed an overall cell voltage degradation rate of
0.2 mV/h under operation at 1 A/cm2, while at 1.5 A/cm2 the deg-
radation rate increases to 0.8mV/h. Electrochemical characterization
has shown that the initial cell degradation (for the first 200 hours)
is due to increase in the polarization resistance and is weakly de-
pendent on the applied current, while the long term degradation
(after >200 hours of operation) exhibits strong dependence on
current density and it is related to increase in the serial resistance
indicating structural changes at the electrodes [397,398]. Degrada-
tion was attributed both to the oxygen electrode (LSM) and to the
cathode electrode (Ni–YSZ). The microstructural changes that took
place after prolonged co-electrolysis at different current densities
were investigated with SEM. In the Ni–YSZ electrode, passivation
and blocking of the TPBs by impurities were the main causes for
degradation. As a result, Ni grain growth and loss of Ni percola-
tion and loss in the Ni–YSZ contact were observed, which weremore
pronounced with increasing current density [398,400]. Formation
of carbon during co-electrolysis can also take place on electrodes
with low porosity and can lead to degradation phenomena (due to
the subsequent volume expansion and nickel dusting), finally re-
sulting in electrode delamination [34].

Alternative cathode materials have also been used for CO2/H2O
electrolysis. Sr-doped LaVO3 (LSV) perovskitewas used togetherwith
CeO2 and Pd as a composite cathode and was successfully em-
ployed in co-electrolysis. It was found that different mechanisms
occur depending on the presence of Pd in the LSV–CeO2 composite,
since Pd addition was reported to inhibit the electrochemical CO2

reduction, while promoting the RWGS reaction for CO production
[35]. No degradation was observed in the performance of the LSV–
CeO2–Pd composite after continuous co-electrolysis under 0.5 A/cm2

for 10 hours, while this was not the case when dry CO2 electrolysis
was attemptedwith the same system,wheremicrostructural changes
suchas the coatingof YSZof an LSVcoating caused severedegradation
due to loss of the catalytically active site for CO2 reduction [35].

Efficient co-electrolysis has been also demonstrated with a
La0.2Sr0.8TiO3+δ cathode, where the flow of a reducing gas (e.g. H2)
or the pre-reduction of the electrode was necessary. Faradaic effi-
ciencies of 85% for H2O electrolysis and 25% for CO2 electrolysis were
achieved at 700 °C [403]. Instead of Ni–YSZ cathode, composites of
(La0.75Sr0.25)0.97(Cr0.5Mn0.5)O3−δ–Gd0.1Ce0.9O1.95 [404] have been pro-
posed, suffering however from difficulties in steam diffusion at least
under the exact operating conditions. Recently, it was shown that
the addition of Cu by impregnation on La0.75Sr0.25Cr0.5Mn0.5O3−δ (LSCM)
can lead to a 6-fold enhancement in activity during H2O electrol-
ysis due to the improved electronic conductivity of the Cu-doped
LSCM. Moreover, the Cu-doped perovskite showed excellent activ-
ity during CO2/H2O co-electrolysis and stability for more than 50
hours of operation at 0.3 A/cm2 at 750 °C [33].

To sum up, CO2–H2O co-electrolysis offers a potentially feasible
and environmentally friendly way for the production of synthesis
gas. Despite its yet unproven durability at high current densities,
this technology is very promising for future commercialization. Most
reports on this process have been performed with Ni–YSZ com-
posites, the typical cathode material of SOEs. However, nickel is a
well-known catalyst for forming solid carbon through the dissoci-
ation of carbon containing gases and disproportionation of CO.
Carbon deposition is a typical degradation source of co-electrolyzers,
while most degradation phenomena arise from the fact that Ni-
based materials are typically subsequent to structural damages due
to volume expansion, as observed also with high temperature water

electrolyzers. However, the operation and degradation mecha-
nisms during co-electrolysis are much more complex compared to
water electrolysis, since both catalytic and electrocatalytic reac-
tions take place at the cathode. Further fundamental investigations
on identifying the exact mechanisms are expected to provide useful
input for the design of more active and stable materials. At present,
only few works have investigated the possibility of using materi-
als alternative to Ni–YSZ as cathodes for co-electrolysis. As in the
case of water electrolysis, ceramic materials with electronic con-
ductivity would fit better to the conditions that occur in the cathode
(not extremely reducing) and would result in better performance.
In this direction, these few attempts have been focused on using
perovskites with different stoichiometries and on the possibility of
combining perovskites with a metallic phase (e.g. Cu, Pd).

6. Outlook and summary

Hydrogen can serve as a chemical carrier for storing excess power
generated by renewable energy sources and it can be subse-
quently utilized in several processes contributing to the realization
of a carbon-neutral energy scenario. Hydrogen can be used as a fuel
on-demand (in internal combustion engines and in fuel cells) having
zero post-combustion emissions. Alternatively, hydrogen can be used
as a reducing agent for the recycling and valorization of point-
source CO2 and its conversion to fine chemicals or fuels, thus leading
to an overall reduction in the fossil fuel consumption.

One should not forget that electrolysis of water produces O2 as
well, which in pure form is a valuable chemical. Future develop-
ments as the electrification of the chemical industrywill undoubtedly
lead to environments where at least part of the generated O2 can
be used in production processes. Another area where both hydro-
gen and oxygen are valuable assets is in the coal-to-liquids industry,
which is rapidly growing in China [414]. By integrating renewable
electricity with coal technology, oxygen can be used in the gasifi-
cation process, while hydrogen can be added to the synthesis gas,
which has inherently low H2/CO ratio when obtained from coal. In
this way the CO2-producing water gas shift process can be mini-
mized. Hence integrating electrolysis with coal technology has
significant potential for reducing the negative environmental impact
associated with the use of coal [415].

Water electrolysis is a viable technology for hydrogen produc-
tion due to its high efficiency and low environmental impact. Even
though water electrolysis is a proven technology of which the
concept has been demonstrated two centuries ago, the large-scale
implementation of electrolyzers for renewable H2 production is ham-
pered by the low abundance of active and stable electrocatalysts,
and their inability to deal with fluctuating conditions. Research efforts
are mainly directed to the development of electrocatalysts, which
are free (or with reduced amounts) of noble metals. Finally, the EU
energy roadmap envisages an integrated network of electrolyzers
operating in conjunction with renewable energy sources. There-
fore, stability in the performance during the intermittent operation
of a daily cycle and long lifetime are required.

Depending on the type of the electrolyte used (i.e. alkaline
liquids, polymeric membranes, solid oxide ceramics), the electrol-
ysis technologies are classified accordingly. The three types of water
electrolyzers share the same operational principles, however dis-
tinct differences exist in terms of operational conditions and thus
in the selection of proper materials. Low temperature electrolysis
offers numerous advantages related with simple cell design, quick
start-up and safe operation. On the other hand, the high temper-
ature during solid oxide electrolysis may offer higher efficiencies
using low-cost materials. Moreover, thermodynamics allows the si-
multaneous co-electrolysis of CO2 and H2O for direct production of
syngas (H2 + CO), a process of great interest that could lead to sig-
nificant reductions in CO2 emissions.
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This review provides a survey of the recent progress in the de-
velopment of active and stable electrocatalysts with minimal cost,
for the three technologies of water electrolysis (alkaline, PEM, SOE).

The discussion in this article is limited to concepts on hetero-
geneous electrocatalysis. However, homogeneous and heterogeneous
catalytic systems for water splitting share structural and function-
al characteristics. As an example, detailed XPS and XAS studies under
electrochemical conditions over prolonged reaction times using
iridium-based catalyst precursors have shown that structural modi-
fications of the ligand framework play an important role in the
catalytic activity [416]. This can be ascribed to an iridium oxide
deposit developed during the decomposition of the precursor [417].
It thus appears that for such cases homogeneous and heteroge-
neous water splitting are two facets of the same process, i.e. water
oxidation on an IrO2 like surface, which forms in a sort of self-
assembling process. Therefore, direct comparison and combination
of the two fields would be of great interest and could lead to sig-
nificant improvements of both approaches.

Our article is structured in two main parts, which concern the
hydrogen and the oxygen electrode respectively. For each case, the
basic requirements and the degradation issues of electrocatalysts
vary depending on the type of electrolysis. The electrocatalytic
activity and stability are subjected to both the nature of the
electrocatalysts and their structural characteristics. These issues are
discussed by pointing out the progress in designing optimized ma-
terials with selected characteristics, the current limitations and
obstacles in materials development and the promising directions
for future research. The main outcome of our review can be sum-
marized as follows:

6.1. Alkaline electrolysis

Water electrolysis in liquid alkaline media takes place at tem-
peratures below 100 °C and is the simplest and most mature among
the three electrolysis technologies. Even though it is the least ef-
ficient electrolysis method, alkaline electrolysis has already found
industrial applications.

Low cost electrocatalysts mainly based on nickel alloys are typ-
ically used both in the anodic and the cathodic compartment of
alkaline electrolyzers. Research efforts are directed at (i) increased
durability and reliability, since both anodic and cathodic
electrocatalysts exhibit deactivation after long-term operation, (ii)
improved electrocatalytic activity, mainly for the oxygen evolution
reaction of which the kinetics are not favored in alkaline media.

To meet these needs, research lines follow two main routes. The
first one aims at the development of novel efficient and stable ma-
terials, either by doping Ni, Co, or Fe based electrocatalysts with other
elements or by investigating alternative materials. In the latter case,
perovskites have shown promise. Theoretical studies are now iden-
tifying relevant descriptors for HER and OER activity to reveal the
targeted characteristics (for example binding energies of reaction
intermediates, occupancy of 3d orbitals with eg symmetry) for maxi-
mizing electrocatalytic activity. A new aspect in oxygen evolution
that has not had much attention so far in both catalysis [418] and
electrocatalysis [127] is in how far magnetic properties of the cat-
alyst can facilitate the formation of O2. This molecule, which is in
the (magnetically ordered) triplet state, is likely to formmost readily
when spin-oriented precursors (O, or OH) are brought together in
the right orientation. Such fundamental insights based on descrip-
tors should then be complementedwith kinetic studies for rigorously
investigating the mechanistic pathway of the reaction under real-
istic conditions in order to lead to the rational design of highly
efficient electrocatalysts (mainly for the oxygen evolution reaction).

The second route is related with the recent advances in the field
of nanotechnology. Several 2D or 3D nanostructures of Ni and Co
basedmaterials have resulted in an evolution of electrocatalysts with

optimized characteristics (surface area, porosity, conductivity) which
also exhibit high efficiency and long-term stability. Advances in
materials nanostructuring are expected to lead to significant im-
provements in electrocatalysts performance due to enhanced
chemical stability, surface area, catalyst utilization or bubble
management.

6.2. PEM electrolysis

The use of solid polymeric membranes with protonic conduc-
tivity for water electrolysis at temperatures below 100 °C is
advantageous since it allows for compact, robust and stackable cell
designs with minor safety issues. However, the acidic environ-
ment in PEM electrolyzers hinders the kinetics of the redox reactions
and introduces the requirement of using expensive noblemetal cata-
lysts thus limiting the commercialization of this technology.

The main challenges in PEM electrolysis are related to the OER,
since HER is a much faster reaction. RuO2 and IrO2 exhibit high OER
activity; however, RuO2 suffers from corrosion/dissolution during
oxygen evolution in acidic environments, while IrO2 is more stable
but is less abundant and thus a very expensive material. The de-
velopment of efficient OER electrocatalysts with reduced price
follows three distinct research directions. The first direction uti-
lizes the relatively less expensive Ru-based materials and aims to
ensure sufficient chemical stability by the incorporation of other
elements, such as Ir or Sn. The second and third directions both focus
on decreasing the loading of the high cost catalysts (Ir). The second
direction aims to the development of large surface area supports
(such as TiO2, TiC, TaC) for introducing the catalytic phase there into.
Finally, the third approach aims to reduce the utilization of noble
metal catalysts by employing alternative preparation methods (e.g.
sputter deposition) and novel catalyst structures (e.g. core–shell
structures).

Regarding the cathode where HER takes place, the state-of-the-
art electrocatalyst consists of highly dispersed Pt nanoparticles on
carbon supports. Although Pt is characterized by its high cost, low
Pt loadings are typically required for HER in PEM electrolysis and
thus this catalyst can be considered as appropriate even for large
scale applications. However, novel nanostructures may contribute
in the future to the further minimization of the Pt loading. Efforts
on developing alternative inorganic materials as alternative HER
electrocatalysts (sulphides, phosphides, carbides and nitrides) are
currently carried out. Among them, MoS2 has been identified as a
promising material, but its performance is still lower compared to
that of the Pt-based state-of-the-art electrocatalysts, due to poor
stability and low electronic conductivity. However, the introduc-
tion of this material into novel nanostructures may lead to advances
in this field.

6.3. Solid oxide electrolysis (SOE)

High temperature steam water electrolysis can provide high ef-
ficiency, with lower total cost compared to conventional low
temperature electrolysis due to favorable thermodynamics and ki-
netics. Moreover the operation temperatures of SOEs open up the
opportunity of the simultaneous electrolysis of CO2 and H2O for the
production of synthesis gas. However, in viable systems the heat
should be generated renewably (by heat from the sun or a nuclear
power plant) or supplied from the waste heat of exothermic
processes.

SOE technology relies on the use of solid oxide ceramics as elec-
trolytes. These oxides typically have the ability of conducting oxygen
ions (O2−), but recently oxides with protonic (H+) conductivity have
been also realized.

Even though kinetics is favored at the operation temperature
range of SOEs, difficulties occur in the selection of appropriate
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catalyst–electrode materials due to a number of degradation and
stability issues and this is the main reason that this technology is
still in the R&D stage.

Composite materials are typically used, where the electrocatalytic
active phase is mixed with the ceramic phase of the electrolyte, in
order not only tomaximize the length of the three-phase-boundaries
(and thus increase electrocatalytic activity), but also to improve me-
chanical stability (by ensuring better adhesion between the electrode
and the electrolyte). Perovskitic oxides are typical materials used
as electrocatalysts for the oxygen electrode, due to their numer-
ous advantageous characteristics such as high catalytic activity, good
thermal compatibility with the ceramic oxide electrocatalyst and
high electronic conductivity. Even though well performing mate-
rials have been identified, there is still on-going research for the
identification of alternative perovskites with mixed ionic–electronic
conductivity (for further extending the reaction zone) andwith better
chemical compatibility with the electrolyte oxides and intercon-
nect materials.

Regarding the hydrogen electrode, Ni-based composites are the
most commonmaterials used in SOE. The use of proton-conducting
SOEs is a promising approach, since hydrogen is produced in a sepa-
rated chamber, which among all eliminates problems from Ni
reoxidation due to the presence of water. For the case of proton-
conducting SOE, sufficient performance has been already achieved
and optimization is only needed regarding the microstructure for
further enhancing catalytic properties. On the other hand, for the
case of O2−-conducting SOE, Ni-based composites suffer from de-
activation not only after intermittent operation in steam electrolysis,
but also during H2O/CO2 co-electrolysis and thus the development
of alternative materials is necessary, a field in which perovskitic ma-
terials are again expected to find application in the future.
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